[1]唐 荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1-4. Tang Di, Mi Zhenli, Chen Yulai. Technology and research and development of advanced automobile steel abroad[J]. Iron and Steel, 2005, 40(6): 1-4. [2]Howell R A, Van Aken D C. A literature review of age hardening Fe-Mn-Al-C alloys[J]. Iron Steel Technology, 2009, 6(4): 193-212. [3]Kim H, Suh D W, Kim N J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014205. [4]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triplex steels[J]. Steel Research International, 2006, 77(9/10): 627-633. [5]Raabe D, Springer H, Gutierrez-Urrutia I, et al. Alloy design, combinatorial synthesis, and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels[J]. JOM, 2014, 66(9): 1845-1856. [6]Suh D W, Kim N J. Low-density steels[J]. Scripta Materialia, 2013, 68(6): 337-338. [7]Liu C M, Cheng H C, Chao C Y, et al. Phase transformation of high temperature on Fe-Al-Mn-Cr-C alloy[J]. Journal of Alloys and Compounds, 2009, 488(1): 52-56. [8]Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density[J]. ISIJ International, 2010, 50(6): 893-899. [9]Tuan Y H, Lin C L, Chao C G, et al. Grain boundary precipitation in Fe-30Mn-9Al-5Cr-0.7C alloy[J]. Materials Transactions, 2008, 49(7): 1589-1593. [10]Tsay G D, Lin C L, Chao C G, et al. A new austeniticFeMnAlCrC alloy with high-strength, high-ductility, and moderate corrosion resistance[J]. Materials Transactions, 2010, 51(12): 2318-2321. [11]Chen M S, Cheng H C, Huang C F, et al. Effects of C and Cr content on high-temperature microstructures of Fe-9Al-30Mn-xC-yCr alloys[J]. Materials Characterization, 2010, 61(2): 206-211. [12]Tuan Y H, Wang C S, Tsai C Y, et al. Corrosion behaviors of austenitic Fe-30Mn-7Al-xCr-1C alloys in 3.5%NaCl solution[J]. Materials Chemistry and Physics, 2009, 114(2/3): 595-598. [13]Huang C F, Ou K L, Chen C S, et al. Research of phase transformation on Fe-8.7Al-28.3Mn-1C-5.5Cr alloy[J]. Journal of Alloys and Compounds, 2009, 488(1): 246-249. [14]Frommeyer G, Drewes E J, Engl B. Physical and mechanical properties of iron-aluminium-(Mn,Si) lightweight steels[J]. Metallurgical Research and Technology, 2000, 97(10): 1245-1253. [15]刘春泉, 彭其春, 薛正良, 等. Fe-Mn-Al-C系列低密度高强钢的研究现状[J]. 材料导报, 2019, 33(8): 2572-2581. Liu Chunquan, Peng Qichun, Xue Zhengliang, et al. Research situation of Fe-Mn-AI-C system low-density high-strength steel[J]. Materials Reports, 2019, 33(8): 2572-2581. [16]王凤权, 孙 挺, 王毛球, 等. Fe-Mn-Al-C系奥氏体基低密度钢的研究进展[J]. 钢铁, 2021, 56(5): 89-102. Wang Fengquan, Sun Ting, Wang Maoqiu, et al. Research progress of Fe-Mn-Al-C system austenitic low density steel[J]. Iron and Steel, 2021, 56(5): 89-102. [17]Jiménez J A, Frommeyer G. The ternary iron aluminum carbides[J]. Journal of Alloys and Compounds, 2011, 509: 2729-2733. [18]Yao M J, Dey P, Seol J B, et a1. Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-A1-C low density steel[J]. Acta Materialia, 2016, 106: 229-238. [19]张明达, 胡春东, 曹文全, 等. 基于Thermo-Calc的中锰中铝Fe-Mn-AI-C低密度钢类SchaeffIer相图绘制与评估[J]. 工程科学学报, 2016, 38(5): 682-690. Zhang Mingda, Hu Chundong, Cao Wenquan, et al. Plotting and evaluation on the Schaeffler diagram of Fe-Mn-Al-C low-density alloys with medium manganese and aluminum contents based on Thermo-Calc software[J]. Chinese Journal of Engineering, 2016, 38(5): 682-690. [20]王伟胜, 朱航宇, 宋明明, 等. Fe-23Mn-xAl-0.7C低密度钢中非金属夹杂物形成机理[J]. 钢铁, 2020, 55(10): 29-36. Wang Weisheng, Zhu Hangyu, Song Mingming, et al. Formation mechanism of non-metallic inclusions in Fe-23Mn-xAl-0.7C lightweight steels[J]. Iron and Steel, 2020, 55(10): 29-36. [21]Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition[J]. Materials Science and Engineering A, 2010, 527(16/17): 3651-3661. [22]Springer H, Raabe D. Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels[J]. Acta Materialia, 2012, 60(12): 4950-4959. [23]Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behaviour of austenitic high-Mn low-density steels[J]. Scripta Materialia, 2013, 68(6): 343-347. [24]Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering A, 2008, 496(1/2): 417-424. [25]Ren P, Chen X P, Mei L, et a1. Intragranular brittle precipitates improve strain hardening capability of Fe-30Mn-11Al-1.2C low density steel[J]. Materials Science and Engineering A, 2020, 775: 138984. [26]Yoo J D, Hwang S W, Park K T. Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel[J]. Metallurgical and Materials Transactions A, 2009, 40: 1520-1523. [27]Moon J, Park S J, Jang J H, et al. Investigations of the microstructure evo1ution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition[J]. Acta Materialia, 2018, 147: 226-235. [28]Park K T. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature[J]. Scripta Materialia, 2013, 68(6): 375-379. [29]Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in a Fe-9Al-28Mn-1.8C alloy[J]. Scripta Materialia, 2010, 63(2): 162-165. [30]Andryushchenko V A, Gavrilyuk V G, Nadutov V M. Atomic and magnetic ordering in the κ-phase of Fe-Al-C alloys[J]. The Physics of Metals and Metallography, 1985, 60(4): 50-55. [31]Yang J, La P, Liu W, et al. Microstructure and properties of Fe3Al-Fe3AlC0.5 composites prepared by self-propagating high temperature synthesis casting[J]. Materials Science and Engineering A, 2004, 382(1/2): 8-14. [32]Bentley A P. Ordering in Fe-Mn-Al-C austenite[J]. Journal of Materials Science Letters, 1986, 5: 907-908. [33]Chu S M, Kao P W, Gan D. Growth kinetics of κ-carbide particles in Fe-30Mn-10Al-1C-1Si alloy[J]. Scripta Metallurgica et Materialia, 1992, 26(7): 1067-1070. [34]Cheng W C, Cheng C Y, Hsu C W, et al. Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel[J]. Materials Science and Engineering A, 2015, 642: 128-135. [35]Zhang J, Jiang Y, Zheng W, et al. Revisiting the formation mechanism of intragranular κ-carbide in austenite of a Fe-Mn-Al-Cr-C low-density steel[J]. Scripta Materialia, 2021, 199(3): 113836. [36]Acselrad O, Kalashnikov I S, Silva E M, et al. Diagram of phase transformations in the austenite of hardened alloy Fe-28%Mn-8. 5%Al-1%C-1.25%Si as a result of aging due to isothermal heating[J]. Metal Science and Heat Treatment, 2006, 48(11): 543-553. [37]Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys[J]. Materials Chemistry and Physics, 1999, 59(1): 96-99. [38]Kim K W, Park S J, Moon J, et al. Characterization of microstructural evolution in austenitic Fe-Mn-Al-C lightweight steels with Cr content[J]. Materials Characterization, 2020, 170: 110717. [39]Zhang Jianlei, Liu Yuxiang, Hu Conghui. The effect of Cr content on intragranular κ-carbide precipitation in Fe-Mn-Al-(Cr)-C low-density steels: A multiscale investigation[J]. Materials Characterization, 2022, 186: 111801. [40]Liu Mingxiang, Zhou Junye, Zhang Jiankang. Ultra-high strength medium-Mn lightweight steel by dislocation slip band refinement and suppressed intergranular κ-carbide with Cr addition[J]. Materials Characterization, 2022, 190: 112042. [41]Liu Jinxu, Wu Huibin, He Jinshan. Effect of κ-carbides on the mechanical properties and superparamagnetism of Fe-28Mn-11Al-1.5/1.7C-5Cr lightweight steels[J]. Materials Science and Engineering A, 2022, 849: 143462. [42]Liu Yuxiang, Liu Mingxiang, Zhang Jianlei. Microstructure and mechanical properties of a Fe-28Mn-9Al-1.2C-(0,3,6,9)Cr austenitic low-density steel[J]. Materials Science and Engineering A, 2021, 821: 141581. [43]Moon J, Ha H Y, Park S J, et al. Effect of Mo and Cr additions on the microstructure, mechanical properties and pitting corrosion resistance of austenitic Fe-30Mn-10. 5Al-1. 1C lightweight steels[J]. Journal of Alloys and Compounds, 2019, 715: 1136-1146. [44]Aaronson H I, LeGous F K. An assessment of studies on homogeneous diffusional nucleation kinetics in binary metallic alloys[J]. Metallurgical Transactions A, 1992, 23(7): 1915-1945. [45]Moon J, Ha H Y, Kim K W, et al. A new class of lightweight, stainless steels with ultra-high strength and large ductility[J]. Scientific Reports, 2020, 10(1): 12140. [46]Chu S M, Kao P W, Gan D. Growth kinetics of κ-carbide particles in Fe30Mn10Al1C-1Si alloy[J]. Scripta Metallurgica et Materialia, 1992, 26(7): 1067-1070. [47]Seol J B, Raabe D, Choi P, et al. Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography[J]. Scripta Materialia, 2013, 68(6): 348-353. [48]Zhang Jianlei, Hu Conghui, Zhang Yunhu, et al. Microstructures, mechanical properties and deformation of near-rapidly solidified low-density Fe-20Mn-9Al-1.2C-xCr steels[J]. Materials and Design, 2020, 186: 108307. [49]Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels[J]. Materials Science and Engineering A, 2016, 652: 69-76. [50]Welsch E, Ponge D, Hafez Haghighat S M, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel[J]. Acta Materialia, 2016, 116: 188-199. [51]Jarlöv Asker, Ji Weiming, Zhu Zhiguang, et al. Molecular dynamics study on the strengthening mechanisms of Cr-Fe-Co-Ni high-entropy alloys based on the generalized stacking fault energy[J]. Journal of Alloys and Compounds, 2022, 905: 164137. [52]Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering A, 2018, 496: 417-424. |