[1]Mazumder J, Choi J, Nagarathnam K, et al. The direct metal deposition of H13 tool steel for 3-D components[J]. The Journal of the Minerals, Metals & Materials Society (TMS), 1997, 49(5): 55-60. [2]France C,Klöcker H, Le Coze J, et al. Nitrogen strengthening of a martensitic steel: Relation between microstructure and mechanical behaviour[J]. Acta Materialia, 1997, 45(7): 2789-2799. [3]Wang Chuanwei, Zhou Hong, Zhang Zhihui, et al. Tensile property of a hot work tool steel prepared by biomimetic coupled laser remelting process with different laser input energies[J]. Applied Surface Science, 2012, 258(22): 8732-8738. [4]Yang Xudong, Li Chuanwei, Zhang Ziyang, et al. Effect of cobalt-based coating microstructure on the thermal fatigue performance of AISI H13 hot work die steel[J]. Applied Surface Science, 2020, 521: 146360. [5]Yucel Birol. Thermal fatigue testing of Stellite 6-coated hot work tool steel[J]. Materials Science and Engineering A, 2010, 527(21-22): 6091-6097. [6]Yin T W, Shen Y F,Xue W Y, et al. Ce addition enabling superior strength and ductility combination of a low-carbon low-manganese transformation-induced plasticity steel[J]. Materials Science and Engineering A, 2022, 849: 143474. [7]Geng Ruming, Li Jing, Shi Chengbin, et al. Effect of Ce on microstructures, carbides and mechanical properties in simulated coarse-grained heat-affected zone of 800 MPa high-strength low-alloy steel[J]. Materials Science and Engineering A, 2022, 840: 142919. [8]刘 亮, 何 文, 杨 伟, 等. Ce及铜模快冷对AZ91合金组织及热稳定性的影响[J]. 特种铸造及有色合金, 2018, 38(12): 1374-1378. Liu Liang, He Wen, Yang Wei, et al. Grainrefinement and thermal stability of copper-mould chilled magnesium alloy containing rare earth Ce[J]. Special Casting and Nonferrous Alloys, 2018, 38(12): 1374-1378. [9]Ghosh Sumit, Mula Suhrit, Malakar Aniruddha, et al. High cycle fatigue performance, crack growth and failure mechanisms of an ultrafine-grained Nb+Ti stabilized, low-C microalloyed steel processed by multiphase controlled rolling and forging[J]. Materials Science and Engineering A, 2021, 825(21): 141883. [10]周小平, 胡心彬, 江 锋. 新型热作模具钢的热疲劳性能[J]. 金属热处理, 2011, 36(1): 107-109. Zhou Xiaoping, Hu Xinbin, Jiang Feng. Thermal fatigue property of a new type hot-work die steel[J]. Heat Treatment of Metals, 2011, 36(1): 107-109. [11]Dhouha Mellouli, Nader Haddar, Alain Köster, et al. Hardness effect on thermal fatigue damage of hot-working tool steel[J]. Engineering Failure Analysis, 2014, 45: 85-95. [12]许书洋, 左鹏鹏, 吴晓春. 硬度对H13热作模具钢热疲劳性能的影响[J]. 金属热处理, 2016, 41(8): 18-23. Xu Shuyang, Zuo Pengpeng, Wu Xiaochun. Effect of hardness on thermal fatigue of H13 hot work die steel[J]. Heat Treatment of Metals, 2016, 41(8): 18-23. [13]Armas A F, Petersen C, Schmitt R, et al. Mechanical and microstructural behaviour of isothermally and thermally fatigued ferritic/martensitic steels[J]. Journal of Nuclear Materials, 2002, 307-311(1): 509-513. [14]Emamverdian Ali Akbar, Sun Yu, Cao Chunping. Deformation and wear in a H21 (3Cr2W8V) steel die during hot forging: Simulation, mechanical properties, and microstructural evolution[J]. Journal of Materials Research and Technology, 2021, 15: 268-277. [15]Emamverdian Ali Akbar, Sun Yu, Cao Chunping, et al. Current failure mechanisms and treatment methods of hot forging tools (dies)-A review[J]. Engineering Failure Analysis, 2021, 129: 105678. |