[1]何忝锜, 米 磊, 郭 凯, 等. 航空钛合金锻造技术的研究进展[J]. 世界有色金属, 2021(9): 113-114. He Tianqi, Mi Lei, Guo Kai, et al. Research progress of aviation titanium alloy forging technology[J]. World Nonferrous Metals, 2021(9): 113-114. [2]刘 迅, 张云秀. 骨科用钛合金研究进展[J]. 轻工科技, 2021, 37(10): 16-17. [3]柳皓晨, 范 林, 张海兵, 等. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185. Liu Haochen, Fan Lin, Zhang Haibing, et al. Research progress of stress corrosion cracking of Ti-alloy in deep sea environments[J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(2): 175-185. [4]赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020, 39(S1): 527-534, 557-558. Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020, 39(S1): 527-534, 557-558. [5]李 蒙, 凤伟中, 关 蕾, 等. 航空航天紧固件用钛合金材料综述[J]. 有色金属材料与工程, 2018, 39(4): 49-53. Li Meng, Feng Weizhong, Guan Lei, et al. Summary of titanium alloy for fastener in aerospace[J]. Nonferrous Metal Materials and Engineering, 2018, 39(4): 49-53. [6]Min X H, Tsuzaki K, Emura S, et al. Enhancement of uniform elongation in high strength Ti-Mo based alloys by combination of deformation modes[J]. Materials Science and Engineering A, 2011, 528(13): 4569-4578. [7]谭 皎, 张伯岩, 朱文光, 等. 时效温度对Ti-5Al-4Zr-10Mo-3Cr钛合金微观组织及力学性能的影响[J]. 金属热处理, 2022, 47(1): 217-225. Tan Jiao, Zhang Boyan, Zhu Wenguang, et al. Effect of aging temperature on microstructure and mechanical properties of Ti-5Al-4Zr-10Mo-3Cr titanium alloy[J]. Heat Treatment of Metals, 2022, 47(1): 217-225. [8]付艳艳, 宋月清, 惠松骁, 等. β钛合金的强韧化机制分析[J]. 稀有金属, 2009, 33(1): 92-95. Fu Yanyan, Song Yueqing, Hui Songxiao, et al. Strength and fracture toughness of beta-titanium alloys[J]. Chinese Journal of Rare Metals, 2009, 33(1): 92-95. [9]何 丹, 王庆娟, 高 颀, 等. 新型β钛合金时效析出相的演变及硬化[J]. 稀有金属, 2016, 40(7): 633-639. He Dan, Wang Qingjuan, Gao Qi, et al. Evolution and hardening of age-precipitated phases of new β titanium alloy[J]. Chinese Journal of Rare Metals, 2016, 40(7): 633-639. [10]刘国龙, 杜赵新, 刘 倩, 等. 时效工艺对高强β钛合金微观组织与力学性能影响[J]. 内蒙古工业大学学报(自然科学版), 2017, 36(2): 121-125. Liu Guolong, Du Zhaoxin, Liu Qian, et al. Effect of aging treatment on microstructure and mechanical properties of high strength β titanium alloy[J]. Journal of Inner Mongolia University of Technology, 2017, 36(2): 121-125. [11]陈 威, 孙巧艳, 肖 林, 等. 应变速率对β固溶Ti-10V-2Fe-3Al合金应力诱发马氏体相变的影响[J]. 中国有色金属学报, 2010, 20(11): 2124-2129. Chen Wei, Sun Qiaoyan, Xiao Lin, et al. lnfluence of strain rate on stress induced martensitic transformation in β solution treated Ti-10V-2Fe-3Al alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(11): 2124-2129. [12]叶 萃. TB6钛合金室温塑性机制研究[D]. 贵阳: 贵州大学, 2015. [13]周克松. 预变形与时效作用下孪生/滑移型Ti-10Mo-1Fe/3Fe层状合金的力学性能[D]. 大连: 大连理工大学, 2018. [14]Burgers W G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1: 561-586. [15]陈福文, 张晓泳, 周科朝. 冷轧对Ti-55531组织特征及时效行为和力学性能的影响[J]. 稀有金属材料与工程, 2015, 44(7): 1719-1723. Chen Fuwen, Zhang Xiaoyong, Zhou Kechao. Effect of cold rolling on microstructure characteristics and subsequent aging behavior and mechanical property of Ti-55531 alloy[J]. Rare Metal Materials and Engineering, 2015, 44(7): 1719-1723. [16]王长浩. Beta钛合金的形变机制及性能研究[D]. 上海: 上海大学, 2018. [17]邓安华. 钛合金的马氏体相变[J]. 上海有色金属, 1999(4): 193-199. [18]沈桂琴, 徐 斌, 彭益群, 等. Ti-15Mo-2.7Nb-3Al-0.2Si高强钛合金的相变[J]. 材料工程, 1999(3): 19-23. Shen Guiqin, Xu Bin, Peng Yiqun, et al. Phase transformation in Ti-15Mo-2.7Nb-3Al-0.2Si high strength titanium alloy[J]. Journal of Materials Engineering, 1999(3): 19-23. [19]Sikka S K, Vohra Y K, Chidambaram R. Omega phase in materials[J]. Progress in Materials Science, 1982, 27: 245-310. [20]Min X H, Emura S, Sekido N, et al. Effects of Fe addition on tensile deformation mode and crevice corrosion resistance in Ti-15Mo alloy[J]. Materials Science and Engineering A, 2010, 527(10/11): 2693-2701. [21]Williams J C, de Fontaine D, Paton N E. The ω-phase as an example of an unusual shear transformation[J]. Metallurgical Transactions, 1973, 12: 2701-2708. [22]尹仁锟, 王庆娟, 高 颀, 等. 热处理对新型β钛合金组织与性能的影响[J]. 稀有金属, 2016, 40(5): 415-420. Yin Renkun, Wang Qingjuan, Gao Qi, et al. Microstructure and mechanical properties of new beta titanium alloy with heat treatment[J]. Chinese Journal of Rare Metals, 2016, 40(5): 415-420. [23]刘国龙. 高强β钛合金双级时效强化机理研究[D]. 呼和浩特: 内蒙古工业大学, 2018. [24]Jia M T, Zhang D L, Gabbitas B, et al. A novel Ti-6Al-4V alloy microstructure with very high strength and good ductility[J]. Scripta Materialia, 2015, 107: 10-13. [25]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science, 1995, 39: 1-5. [26]Xu W, Kim K B, Das J, et al. Phase stability and its effect on the deformation behavior of Ti-Nb-Ta-In/Cr alloys[J]. Scripta Materialia, 2006, 54: 1943-1948. [27]Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation induced martensite and associated tensile properties in a β metastable Ti alloy[J]. Metallurgical and Materials Transactions A, 2000, 31(4): 1095-1106. [28]Ahmed M, Wexler D, Casillas G, et al. Strain rate dependence of deformation-induced transformation and twinning in a metastable β titanium alloy[J]. Acta Materialia, 2016, 104: 190-200. [29]闵小华, 向 力, 李明佳, 等. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272. Min Xiaohua, Xiang Li, Li Mingjia, et al. Effect of {332}<113> twins combined with isothermal ω-phase on mechanical properties in Ti-15Mo alloy with different oxygen contents[J]. Acta Metallurgica Sinica, 2018, 54(9): 1262-1272. [30]Hanada S, Izumi O. Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metallurgical Transactions A, 1986, 17(8): 1409-1420. [31]Hanada S, Izumi O. Deformation characteristics in β phase Ti-Nb alloys[J]. Metallurgical and Materials Transactions A, 1985, 16(5): 789-795. [32]Kuan T S, Ahrens R R, Sass S L. The stress-induced omega phase transformation in Ti-V alloys[J]. Metallurgical Transactions A, 1975, 6: 1767-1774. [33]Sun F, Zhang J Y, Marteleur M, et al. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects[J]. Acta Materialia, 2013, 61: 6406-6417. [34]Marteleur M, Sun F, Gloriant T, et al. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects[J]. Scripta Materialia, 2012, 66: 749-752. [35]宋振亚, 孙巧艳, 肖 林, 等. 预变形对TB3合金时效析出行为及其力学性能的影响[J]. 稀有金属材料与工程, 2010, 39(5): 791-795. Song Zhenye, Sun Qiaoyan, Xiao Lin, et al. Influence of predeformation on aging precipitation behavior and mechanical properties of TB3[J]. Rare Metal Materials and Engineering, 2010, 39(5): 791-795. [36]高 朋. 预变形组织与析出相协同作用下Ti-Mo合金力学性能[D]. 大连: 大连理工大学, 2018. [37]万明攀. Ti-1300合金室温变形与组织演变研究[D]. 西安: 西北工业大学, 2015. [38]徐铁伟. 高强TB8钛合金相变行为与组织控制研究[D]. 西安: 西北工业大学, 2016. [39]向 力. β型Ti-Mo-O钛合金机械孪晶与析出相协同作用下强塑性研究[D]. 大连: 大连理工大学, 2017. |