金属热处理 ›› 2023, Vol. 48 ›› Issue (12): 79-86.DOI: 10.13251/j.issn.0254-6051.2023.12.012

• 工艺研究 • 上一篇    下一篇

热处理对新型低活化钢组织及力学性能的影响

高云飞1, 曹磊1, 邱国兴2,3, 禚学院4   

  1. 1.河北工业职业技术大学 材料工程系, 河北 石家庄 050091;
    2.西安建筑科技大学 冶金工程学院, 陕西 西安 710055;
    3.河钢集团有限公司, 河北 石家庄 050023;
    4.广电计量检测(沈阳)有限公司, 辽宁 沈阳 110168
  • 收稿日期:2023-07-20 修回日期:2023-10-21 出版日期:2023-12-25 发布日期:2024-01-29
  • 通讯作者: 邱国兴,副教授,博士,E-mail:guoxingqiu2008@126.com
  • 作者简介:高云飞(1980—),男,副教授,硕士,主要研究方向为材料组织性能调控,E-mail:hbgyjjjgyf@163.com。
  • 基金资助:
    中国博士后科学基金(2022M720982);河北省自然基金(E2021417001);陕西省自然基金(2021JQ-502)

Effect of heat treatment on microstructure and properties of a reduced activation steel

Gao Yunfei1, Cao Lei1, Qiu Guoxing2,3, Zhuo Xueyuan4   

  1. 1. Materials Engineering Department, Hebei College of Industry and Technology, Shijiazhuang Hebei 050091, China;
    2. School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an Shaanxi 710055, China;
    3. HBIS Group Co., Ltd., Shijiazhuang Hebei 050023, China;
    4. Shenyang Division of GRG Metrology and Test, Shenyang Liaoning 110168, China
  • Received:2023-07-20 Revised:2023-10-21 Online:2023-12-25 Published:2024-01-29

摘要: 以真空感应+电渣重熔制备的新型低活化钢为研究对象,研究正火和回火温度对微观组织和力学性能的影响。利用相变仪和Thermo-Calc软件对试验钢相变温度进行了测试和计算;利用金相显微镜、扫描电镜和透射电镜对试验钢显微组织和析出相进行了观察;利用显微硬度计、电子万能材料试验机和摆锤式冲击试验机对钢硬度、拉伸性能和冲击性能进行测试。结果表明,较低正火温度不能消除轧制带状组织,较高正火温度将造成晶粒粗化;回火后组织均为回火马氏体,755 ℃和790 ℃回火可避免Laves相的析出,随回火温度的升高,钢中M23C6和MX析出相发生粗化,碳化物的析出降低了碳的固溶强化作用;随回火温度的升高,钢的显微硬度、屈服强度和抗拉强度不断降低。在690~755 ℃回火区间内,钢伸长率和室温冲击吸收能量随回火温度的升高而增加,韧脆转变温度随回火温度的升高而降低。790 ℃回火钢伸长率和室温冲击吸收能量降低,韧脆转变温度升高;经1050 ℃×30 min正火+755 ℃×90 min回火,试验钢可获得最佳综合力学性能,细小的晶粒尺寸和弥散分布的纳米级碳化物是其优良力学性能的关键。

关键词: 低活化钢, 正火, 回火, 析出相, 拉伸性能, 冲击性能

Abstract: A reduced activation steel produced by vacuum induction melting and electroslag remelting was used as the research object and the effects of normalizing temperature and tempering temperature on microstructure and mechanical properties of the steel were investigated. The phase transformation temperature of the steel was measured and calculated by thermodilatometry and Thermo-Calc software. The microstructure and precipitates of the steel normalized and tempered were observed by means of optical microscope, scanning electron microscope and transmission electron microscope. The hardness, tensile and impact property were tested by microhardness tester, electronic universal material testing machine and pendulum impact testing machine. The results show that the lower normalizing temperature cannot eliminate the rolling banded structure, and the higher normalizing temperature result in grain coarsening. When tempered at different temperatures, the microstructure of the steel is tempered martensite. The precipitation of Laves phase can be avoided by tempering at 755 ℃ and 790 ℃. With the increase of tempering temperature, the precipitation of M23C6 and MX in the steel coarsens, and the precipitation of carbide reduces the solution strengthening effect of carbon. The microhardness, yield strength and tensile strength decrease with the tempering temperature increasing. When the tempering temperature ranged from 690 ℃ to 755 ℃, the elongation and impact absorbed energy at room temperature increase with the tempering temperature, and the ductile to brittle transition temperature decreases with the tempering temperature. The elongation and impact absorbed energy of the steel tempered at 790 ℃ decrease, and the ductile to brittle transition temperature increases. The best comprehensive mechanical properties can be obtained by normalizing at 1050 ℃×30 min+tempering at 755 ℃×90 min. Fine grain size and dispersed nanometer carbides are the key factors for the excellent mechanical properties of the steel.

Key words: reduced activation steel, normalizing, tempering, precipitated phase, tensile properties, impact property

中图分类号: