[1]韩小朋, 王均安, 陈永充, 等. 热轧形变量对低活化钢中MX析出行为的影响[J]. 金属热处理, 2019, 44(3): 108-113. Han Xiaopeng, Wang Jun'an, Chen Yongchong, et al. Effect of hot-rolling reduction on MX precipitation in reduced activation steel[J]. Heat Treatment of Metals, 2019, 44(3): 108-113. [2]Qiu Guoxing, Zhan Dongping, Cao Lei, et al. Review on development of reduced activated ferritic/martensitic steel for fusion reactor[J]. Journal of Iron and Steel Research International, 2022, 29(9): 1343-1356. [3]Wang Dongyu, Yang Shu, Zhang Ming, et al. Concept design of the control method for the NBI acceleration grid power supply-conversion system of CFETR[J]. Fusion Engineering and Design, 2021, 165(1): 112253. [4]Ukai S, Harada M, Okada H, et al. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials[J]. Applied & Environmental Microbiology, 1993, 79(6): 1843-1849. [5]Lee C H, Park J Y, Seol W K, et al. Microstructure and tensile and Charpy impact properties of reduced activation ferritic-martensitic steel with Ti[J]. Fusion Engineering and Design, 2017, 124: 953-957. [6]Kim H K, Lee J W, Moon J, et al. Effects of Ti and Ta addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel for nuclear fusion reactors[J]. Journal of Nuclear Materials, 2018, 500: 327-336. [7]Qiu Guoxing, Zhan Dongping, Li Changsheng, et al. Influence of inclusions on the mechanical properties of RAFM steels via Y and Ti addition[J]. Metals, 2019, 9(8): 851. [8]Qiu Guoxing, Zhan Dongping, Li Changsheng, et al. Effects of Y and Ti addition on microstructure stability and tensile properties of reduced activation ferritic/martensitic steel[J]. Nuclear Engineering and Technology, 2019, 51(5): 1365-1372. [9]夏礼栋, 霍晓杰, 张 弛, 等. 低活化钢的氦离子辐照损伤行为[J]. 金属热处理, 2022, 47(7): 211-216. Xia Lidong, Huo Xiaojie, Zhang Chi, et al. Helium ion irradiation damage behavior in a reduced activation steel[J]. Heat Treatment of Metals, 2022, 47(7): 211-216. [10]郑 涛, 李永旺, 吴 裕, 等. 正火温度对低活化马氏体钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(12): 103-108. Zheng Tao, Li Yongwang, Wu Yu, et al. Effect of normalizing temperature on microstructure and mechanical properties of reduced activation martensitic steel[J]. Heat Treatment of Metals, 2022, 47(12): 103-108. [11]崔辰硕, 高秀华, 苏冠侨, 等. 正火对高Cr马氏体耐热钢组织和性能的影响[J]. 东北大学学报(自然科学版), 2018, 39(1): 40-44. Cui Chenshuo, Gao Xiuhua, Su Guanqiao, et al. Effect of normalizing on microstructure and mechanical properties of high chromium martensitic heat resistant steels[J]. Journal of Northeastern University (Natural Science), 2018, 39(1): 40-44. [12]Zhan Dongping, Qiu Guoxing, Li Changsheng, et al. Effects of Ti addition on the microstructure and tensile properties of China low activation martensitic steel for nuclear fusion reactors[J]. Steel Research International, 2019, 90(9): 1-8. [13]潘钱付, 牛 犇, 贾玉振, 等. 热处理工艺对Fe-12Cr马氏体钢组织与力学性能的影响[J]. 材料热处理学报, 2020, 41(5): 102-109. Pan Qianfu, Niu Ben, Jia Yuzhen, et al. Effect of heat treatment on microstructure and mechanical properties of Fe-12Cr martensitic steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 102-109. [14]王东伟, 战东平, 邱国兴, 等. 回火温度对CLAM钢组织及性能的影响[J]. 材料热处理学报, 2020, 41(3): 124-130. Wang Dongwei, Zhan Dongping, Qiu Guoxing, et al. Effect of tempering temperature on microstructure and properties of CLAM steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 124-130. [15]邱国兴, 白 冲, 蔡明冲, 等. RAFM钢应变补偿本构关系及热加工图[J]. 钢铁, 2022, 57(11): 157-166. Qiu Guoxing, Bai Chong, Cai Mingchong, et al. Strain compensation constitutive equation and hot processing map of RAFM steel[J]. Iron andSteel, 2022, 57(11): 157-166. [16]姚 军, 索进平. 热处理工艺对RAFM钢组织与性能的影响[J]. 金属热处理, 2010, 35(12): 59-63. Yao Jun, Suo Jinping. Effect of heat treatment on microstructure and properties of RAFM steel[J]. Heat Treatment of Metals, 2010, 35(12): 59-63. [17]李 烁, 王一德, 武会宾, 等. 超低碳低活化铁素体/马氏体钢的组织与性能[J]. 材料热处理学报, 2014, 35(9): 89-94. Li Shuo, Wang Yide, Wu Huibin, et al. Microstructure and mechanical properties of a type of ultra-low carbon RAFM steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(9): 89-94. [18]姚 军. 新型低活化马氏体钢的研究[D]. 武汉: 华中科技大学, 2011. Yao Jun. Study on new low activation martensitic steel[D]. Wuhan: Huazhong University of Science and Technology, 2011. [19]Yan P, Liu Z D, Bao H S, et al. Effect of microstructural evolution on high-temperature strength of 9Cr-3W-3Co martensitic heat resistant steel under different aging conditions[J]. Materials Science and Engineering A, 2013, 588: 22-28. [20]王 学, 于淑敏, 任遥遥, 等. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202. Wang Xue, Yu Shumin, Ren Yaoyao et al. Laves phase evolution in P92 steel during aging[J]. Acta Metallurgica Sinica, 2014, 50(10): 1195-1202. [21]李金波, 吴红艳, 高秀华, 等. 热处理工艺对高铁耐蚀60Si2Mn弹簧钢组织和性能的影响[J]. 金属热处理, 2022, 47(8): 135-140. Li Jinbo, Wu Hongyan, Gao Xiuhua, et al. Influence of heat treatment process on microstructure and mechanical properties of corrosion resistant 60Si2Mn spring steel for high-speed railway[J]. Heat Treatment of Metals, 2022, 47(8): 135-140. [22]张 开, 王 学, 倪满生, 等. 高温时效对P91钢组织及硬度的影响[J]. 金属热处理, 2022, 47(12): 7-12. Zhang Kai, Wang Xue, Ni Mansheng, et al. Effect of high temperature aging on microstructural and hardness of P91 steel[J]. Heat Treatment of Metals, 2022, 47(12): 7-12. [23]Du J, Strangwood M, Davis C L. Effect of TiN particles and grain size on the charily impact transition temperature in steels[J]. Journal of Materials Science and Technology, 2012, 28(10): 878-888. [24]Qiu Guoxing, Du Qing, Li Xiaoming, et al. Strengthening effect of multiscale second phases in reduced activation ferrite/martensitic steel[J]. Steel Research International, 2022, 93(4)3: 2100430. [25]Qiu Guoxing, Wei Xuli, Bai Chong, et al. Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting[J]. Nuclear Engineering and Technology, 2022, 54(7): 2376-2385. [26]Chun Y B, Kang S H, Lee D W, et al. Development of Zr-containing advanced reduced activation alloy (ARAA) as structural material for fusion reactors[J]. Fusion Engineering and Design, 2016, 109: 629-633. |