[1]王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1-26. Wang Qingjiang, Liu Jianrong, Yang Rui. High temperature titanium alloys: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34 (4): 1-26. [2]董 飞, 何国强, 张贵田. 合金元素Si在钛合金中作用的研究进展[J]. 金属热处理, 2007, 32(11): 5-10. Dong Fei, He Guoqiang, Zhang Guitian. Research development of the effect on Si element on titanium alloy[J]. Heat Treatment of Metals, 2007, 32(11): 5-10. [3]吴明宇, 弭光宝, 李培杰, 等. 600 ℃高温钛合金燃烧组织演变及机理[J]. 物理学报, 2023, 72(16): 198-216. Wu Mingyu, Mi Guangbao, Li Peijie, et al. Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy[J]. Acta Physica Sinica, 2023,72(16): 198-216. [4]张阿莉, 刘 栋, 汤海波, 等. 热暴露对激光沉积Ti60A高温钛合金组织性能影响[J]. 稀有金属材料与工程, 2014, 43(7): 1687-1690. Zhang Ali, Liu Dong, Tang Haibo, et al. Effect of thermal exposure on microstructure and mechanical properties of laser deposited Ti60A high temperature titanium alloy[J]. Rare Metal Materials and Engineering, 2014, 43(7): 1687-1690. [5]贾 倩, 姚泽坤, 张东亚, 等. 不同温度锻造的Ti2AlNb/TC11双合金焊接界面组织在热暴露时的变化[J]. 焊接学报, 2014, 35(11): 79-83, 117. Jia Qian, Yao Zekun, ZhangDongya, et al. Microstructure evolution after thermal exposure in weld interface of Ti2AlNb/TC11 dual alloy forged at different temperatures[J]. Transactions of the China Welding Institution, 2014, 35(11): 79-83, 117. [6]秦 春, 姚泽坤, 周 伟, 等. 热暴露对Ti-24Al-15Nb-1.5Mo/TC11焊接界面显微硬度和元素分布的影响[J]. 焊接学报, 2012, 33(8): 33-36. Qin Chun, Yao Zekun, Zhou Wei, et al. Effect of thermal exposure on microhardness and element distribution in welding interface of Ti-24Al-15Nb-1.5Mo/TC11 dual alloys[J]. Transactions of the China Welding Institution, 2012, 33(8): 33-36. [7]左从进, 李晋炜, 余 伟, 等. 高温钛合金Ti-55与Ti-60电子束焊接头性能[J]. 焊接学报, 2011, 32(4): 103-106. Zuo Congjin, Li Jinwei, Yu Wei, et al. Tensile performance of Ti-55 and Ti-60 joints welded by electron beam welding[J]. Transactions of the China Welding Institution, 2011, 32(4): 103-106. [8]李明兵, 王新南, 商国强, 等. 近α型、(α+β)型和近β型钛合金的高温力学性能[J]. 金属热处理, 2022, 47(11): 200-204. Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. High temperature mechanical properties of near α, (α+β) and near β type titanium alloys[J]. Heat Treatment of Metals, 2022, 47(11): 200-204. [9]Li Geping, Li Dong, Liu Yuyin, et al. Morphology characteristics of Nd-rich phase particles in melt-quenched Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Journal of Materials Science and Technology, 1995, 14(6): 460-462. [10]Li Geping, Li Qingchun, Li Dong, et al. Structure of second phase particles in as-cast Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Journal of Materials Science and Technology, 1998, 17(1): 41-44. [11]Li Geping, Li Dong, Liu Yuying, et al. Nd-rich phase particles in as-forged Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Acta Metallurgica Sinica (English Letters), 1998, 11(4): 261-264. [12]Li Geping, Li Dong, Liu Yuying. Nucleation of rare earth-rich phase particles in Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Acta Metallurgica Sinica (English Letters), 1998,11(4): 265-269. [13]Li Geping, Guan Shaoxuan, Wang Qingjiang, et al. Effect of high temperature deformation on morphology of Nd-rich phase particles in Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd alloy[J]. Acta Metallurgica Sinica (English Letters), 1995,8(6): 45-49. [14]Zhang Shangzhou, Xu Huizhong, Liu Ziquan, et al. Alloying elements characterization in a Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-1Nd titanium alloy by carbon addition[J]. Journal of University of Science and Technology Beijing (English Edition), 2005, 12(3): 252-256. [15]Zhang Shangzhou, Gao Yuan, Wang Guodong, et al. Growth behavior of α phase in Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.7Nd titanium alloy[J]. Journal of Materials Science and Technology, 2006, 22(4): 459-464. [16]Wang Kelu, Lu Shiqiang, Dong Xianjuan. Deformation behavior of Ti-5.6Al-4.8Sn-2.0Zr-1.0Mo-0.35Si-0.85Nd alloy in β/quasi-β forging process[J]. Journal of Iron and Steel Research (International), 2016, 23(12): 1297-1302. |