金属热处理 ›› 2024, Vol. 49 ›› Issue (4): 26-34.DOI: 10.13251/j.issn.0254-6051.2024.04.005

• 材料研究 • 上一篇    下一篇

1900 MPa级耐热轴承钢的热变形行为与热加工图

郭春成1,2, 亓海全1, 迟宏宵2, 谷金波2, 刘安奇1, 王为民1   

  1. 1.桂林理工大学 材料科学与工程学院, 广西 桂林 541004;
    2.钢铁研究总院有限公司 特殊钢研究院, 北京 100080
  • 收稿日期:2023-11-13 修回日期:2024-03-07 出版日期:2024-04-25 发布日期:2024-05-27
  • 通讯作者: 亓海全,副教授,博士,E-mail: alexander_qi@163.com
  • 作者简介:郭春成(1997—),男,硕士研究生,主要研究方向为高温耐热轴承钢,E-mail: 1842703512@qq.com。
  • 基金资助:
    国家科技重大专项(J2019-VI-0019-0314)

Thermal deformation behavior and hot processing maps of    1900 MPa grade heat-resistant bearing steel

Guo Chuncheng1,2, Qi Haiquan1, Chi Hongxiao2, Gu Jinbo2, Liu Anqi1, Wang Weimin1   

  1. 1. School of Materials Science and Engineering, Guilin University of Technology, Guilin Guangxi 541004, China;
    2. Research Institute of Special Steels, Central Iron and Steel Research Institute Co., Ltd., Beijing 100080, China
  • Received:2023-11-13 Revised:2024-03-07 Online:2024-04-25 Published:2024-05-27

摘要: 使用Gleeble-3500热力模拟试验机对1900 MPa级耐热轴承钢进行热压缩试验,研究其在变形温度900~1150 ℃、应变速率0.001~10 s-1、应变量为0.8情况下的热变形行为和组织演变。分析变形温度和应变速率对试验钢流变行为的影响,基于Arrhenius模型构建应变量范围为0.1~0.8的本构方程,根据动态材料模型(DMM)绘制应变量为0.2、0.4、0.6和0.8下的热加工图,分析不同热加工区试验钢的微观组织演变以验证得到的最优热加工区。结果表明,在ε·= 0.001~10 s-1 和变形温度为1050~1150 ℃的变形条件下,真应力-真应变曲线在加工硬化后都出现明显平台,这体现出动态回复(DRV)特征;在ε·= 0.001~10 s-1 和变形温度为900~1100 ℃的变形条件下,曲线体现出明显峰值,这体现出动态再结晶(DRX)型特征。建立本构方程并对其进行验证,流变应力试验值与计算值的相关系数R=0.973,较高的相关系数表明建立的流变应力本构模型能够比较精确地预测合金的流变应力。热加工图表示试验范围内最佳的工艺参数为,变形温度1070~1150 ℃,应变速率0.01~0.1 s-1

关键词: 1900 MPa级耐热轴承钢, 热变形行为, 动态再结晶, 本构方程, 热加工图

Abstract: Gleeble-3500 thermal simulation testing machine was used to conduct hot compression tests on a 1900 MPa heat-resistant bearing steel to study its hot deformation behavior and microstructure evolution at strain of 0.8 in the deformation temperature range of 900-1150 ℃ and strain rate range of 0.001-10 s-1. The effect of deformation temperature and strain rate on the flow behavior of the tested steel was analyzed, the constitutive equations with strain ranges of 0.1-0.8 were constructed based on the Arrhenius model, and the hot processing maps with strain values of 0.2, 0.4, 0.6 and 0.8 were drawn based on the dynamic material model (DMM). The microstructure evolution of the tested steel was analyzed in different hot working zones to verify the optimal hot working zone obtained. The results show that under deformation conditions of 0.001-10 s-1 and 1050-1150 ℃, the true stress-true strain curves exhibit a clear plateau after work hardening, which reflects the characteristics of dynamic recovery (DRV), while under deformation conditions of 0.001-10 s-1 and 900-1100 ℃, the curves exhibit a clear peak, which reflects the characteristics of dynamic recrystallization (DRX). By establishing and verifying the constitutive equations, it is found that the correlation coefficient between the tested and calculated values of flow stress is R=0.973, which indicates that the established flow stress constitutive model can accurately predict the flow stress of the alloy. The hot processing maps show that the optimal process parameters within the test range are deformation temperature of 1070-1150 ℃, and strain rate of 0.01-0.1 s-1.

Key words: 1900 MPa grade heat-resistant bearing steel, thermal deformation behavior, dynamic recrystallization, constitutive equation, hot processing map

中图分类号: