金属热处理 ›› 2024, Vol. 49 ›› Issue (6): 239-247.DOI: 10.13251/j.issn.0254-6051.2024.06.038

• 数值模拟 • 上一篇    下一篇

液氮辅助激光熔覆温度场仿真及熔覆层摩擦磨损性能分析

王凯明1,2, 姜芙林1,2,3, 卜善飞1,2, 王超1,2, 姜志勇1,2, 刘庆玉1,2   

  1. 1.青岛理工大学 机械与汽车工程学院, 山东 青岛 266520;
    2.青岛理工大学 工业流体节能与污染控制教育部重点实验室, 山东 青岛 266520;
    3.山东省主要农作物机械化生产装备协同创新中心, 山东 青岛 266109
  • 收稿日期:2023-12-07 修回日期:2024-04-24 出版日期:2024-06-25 发布日期:2024-07-29
  • 通讯作者: 姜芙林,副教授,博士,E-mail:sdujiangfulin@gmail.com
  • 作者简介:王凯明(1998—),男,硕士研究生,主要研究方向为激光熔覆及再制造,E-mail:2523082498@qq.com。
  • 基金资助:
    山东省自然科学基金(ZR2022MEE081,ZR2021ME198);山东省主要农作物机械化生产装备协同创新中心开放课题(SDXTZX-21);高等学校学科创新引智计划(D21017);山东省高等学校“青创科技支持计划”(2021KJ077)

Temperature field simulation of liquid nitrogen assisted laser cladding and analysis of friction and wear property of clad layer

Wang Kaiming1,2, Jiang Fulin1,2,3, Bu Shanfei1,2, Wang Chao1,2, Jiang Zhiyong1,2, Liu Qingyu1,2   

  1. 1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao Shandong 266520, China;
    2. Key Laboratory of Energy Conservation and Pollution Control for Industrial Fluids, Ministry of Education, Qingdao University of Technology, Qingdao Shandong 266520, China;
    3. Collaborative Innovation Center for Shandong's Main Crop Production Equipment and Mechanization, Qingdao Shandong 266109, China
  • Received:2023-12-07 Revised:2024-04-24 Online:2024-06-25 Published:2024-07-29

摘要: 针对液氮辅助激光熔覆制备高熵合金涂层过程,综合使用有限元分析与试验验证等方法,分析不同液氮施加方式下的熔覆层温度梯度与冷却速率,揭示施加液氮对熔覆层温度梯度和冷却速率影响的理论依据。有限元仿真结果表明,在激光功率相同时,液氮辅助技术的添加会使熔覆层冷却速率加快,温度梯度增大,残余应力减小,最高冷却速率为8900 ℃/s,是空冷状态下的1.505倍;在液氮施加方式相同时,激光功率的增加会使熔覆层温度梯度增大,冷却速率加快。试验结果表明,液氮辅助激光熔覆过程中液氮的加入会提高熔覆层的硬度,在激光功率为1500 W时硬度提升最明显,是空冷状态下的1.3倍;降低熔覆层的摩擦因数,在1100~1900 W时熔覆层平均摩擦因数为0.146、0.256、0.375、0.351、0.382,均低于空冷状态下的平均摩擦因数;减少熔覆层的磨损体积,在1700 W时磨损体积较空冷状态下的磨损体积减少量最多,可达55.4%,提高了熔覆层的摩擦磨损性能。

关键词: 液氮辅助, 激光熔覆, 冷却速度, 高熵合金, 摩擦磨损性能

Abstract: Aiming at the process of preparing high-entropy alloy coating by liquid nitrogen assisted laser cladding, the temperature gradient and cooling rate of the clad layer under different liquid nitrogen application modes were analyzed by means of finite element analysis and experimental verification, and the theoretical basis of the influence of liquid nitrogen on the temperature gradient and cooling rate of the clad layer was revealed. The finite element simulation results show that when the laser power is fixed, the addition of liquid nitrogen assisted technology accelerates the cooling rate of the clad layer, increases the temperature gradient and reduces the residual stress. The maximum cooling rate is 8900 ℃/s, which is 1.505 times than that of air cooling. When the applied liquid nitrogen is fixed, the increase of laser power increases the temperature gradient of the clad layer and accelerates the cooling rate. The experimental results show that the addition of liquid nitrogen in the process of liquid nitrogen assisted laser cladding increases the hardness of the clad layer. When the laser power is 1500 W, the hardness increase is the most obvious, which is 1.3 times than that of air cooling. The friction coefficient of the clad layer is reduced, the average friction coefficient of the clad layer is 0.146, 0.256, 0.375, 0.351 and 0.382 at laser power of 1100-1900 W, which is lower than the average friction coefficient under air cooling condition. The wear volume of the clad layer is reduced. At laser power of 1700 W, the wear volume reduction is the most compared with that under air cooling condition, up to 55.4%, which improves the friction and wear property of the clad layer.

Key words: liquid nitrogen assisted, laser cladding, cooling rate, high-entropy alloy, friction and wear property

中图分类号: