金属热处理 ›› 2024, Vol. 49 ›› Issue (9): 297-307.DOI: 10.13251/j.issn.0254-6051.2024.09.050
• 综述 • 上一篇
贺涛1, 曹红帅1, 李贝贝1, 齐福刚1, 赵镍1, 廖斌2, 欧阳晓平1
收稿日期:
2024-03-15
修回日期:
2024-07-05
出版日期:
2024-09-25
发布日期:
2024-10-29
通讯作者:
齐福刚,教授,博士,E-mail:qifugang@xtu.edu.cn
作者简介:
贺 涛(2000—),男,硕士研究生,主要研究方向为镁合金表面改性,E-mail: taohe0010@163.com。
基金资助:
He Tao1, Cao Hongshuai1, Li Beibei1, Qi Fugang1, Zhao Nie1, Liao Bin2, Ouyang Xiaoping1
Received:
2024-03-15
Revised:
2024-07-05
Online:
2024-09-25
Published:
2024-10-29
摘要: CrAlN涂层具有较高的硬度和耐磨性,被广泛应用于切削刀具和模具的表面防护。本文首先介绍了CrAlN涂层的结构及其对涂层力学性能和热分解机制的影响,指出Al元素含量及其存在方式是影响CrAlN晶体结构和性能的重要因素;其次,综述了CrAlN基多元涂层和多层涂层在力学性能、高温抗氧化性能的研究现状,围绕元素掺杂改性和多层涂层结构设计,对比分析各种改性方法的优势与不足;随后,总结了Si、Y、V等元素掺杂对涂层性能的影响,指出构建纳米尺度的多层结构能显著改善涂层性能;最后,讨论了CrAlN基涂层的高温氧化行为和高温失效机制,为CrAlN基硬质涂层的性能优化提供参考。
中图分类号:
贺涛, 曹红帅, 李贝贝, 齐福刚, 赵镍, 廖斌, 欧阳晓平. CrAlN基涂层力学及抗氧化性能研究进展[J]. 金属热处理, 2024, 49(9): 297-307.
He Tao, Cao Hongshuai, Li Beibei, Qi Fugang, Zhao Nie, Liao Bin, Ouyang Xiaoping. Research progress on mechanical properties and oxidation resistance of CrAlN-based coatings[J]. Heat Treatment of Metals, 2024, 49(9): 297-307.
[1]居志兰, 花国然, 张 华. 硬质合金刀具材料的研究进展[J]. 稀有金属与硬质合金, 2011, 39(2): 50-53. Ju Zhilan, Hua Guoran, Zhang Hua. The latest development of cemented carbide tool material[J]. Rare Metals and Cemented Carbides, 2011, 39(2): 50-53. [2]王 云, 谢小豪, 汪艳亮, 等. 硬质合金刀具涂层的研究进展[J]. 有色金属科学与工程, 2019, 10(1): 60-66. Wang Yun, Xie Xiaohao, Wang Yanliang, et al. Latest progress in the preparation of cemented carbide tool coatings[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 60-66. [3]Knotek O, Löffler F, Bosserhoff B. PVD coatings for diecasting moulds[J]. Surface and Coatings Technology, 1993, 62(1-3): 630-634. [4]Löffler F. Wear and cutting performance of coated microdrills[J]. Surface and Coatings Technology, 1998, 107(2-3): 191-196. [5]袁 嵩, 王 帅, 方 略, 等. H13钢表面多弧离子镀CrAlN涂层的显微硬度及耐磨性影响[J]. 装备环境工程, 2023, 20(11): 115-120. Yuan Song, Wang Shuai, Fang Lue, et al. Effect on the microhardness and wear resistance of multi arc ion plating CrAlN coating on H13 steel[J]. Equipment Environmental Engineering, 2023, 20(11): 115-120. [6]覃 群, 付泽钰, 王天国. 模具钢表面多弧离子镀CrAlN涂层的制备及其摩擦性能研究[J]. 润滑与密封, 2023, 48(10): 114-119. Qin Qun, Fu Zeyu, Wang Tianguo. Preparation and friction properties of multi-arc ion-plating CrAlN coating on die steel surface[J]. Lubrication Engineering, 2023, 48(10): 114-119. [7]Willmann H, Mayrhofer P H, Persson P, et al. Thermal stability of Al-Cr-N hard coatings[J]. Scripta Materialia, 2006, 54(11): 1847-1851. [8]Wang Di, Lin Songsheng, Shi Qian, et al. Microstructure effects on fracture failure mechanism of CrAl/CrAlN coating[J]. Ceramics International, 2021, 47(3): 3657-3664. [9]Polcar T, Cavaleiro A. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings—Structure and oxidation[J]. Materials Chemistry and Physics, 2011, 129(1/2): 195-201. [10]李凯庆. CrAlBSiN单层及CrAlBN/CrAlSiN多层涂层结构及性能的研究[D]. 长沙: 中南大学, 2023. [11]林松盛, 刘若愚, 田 甜, 等. Cr-CrN-Cr-CrAlN多层膜厚度对结构和性能的影响[J]. 真空, 2023, 60(4): 1-7. Lin Songsheng, Liu Ruoyu, Tian Tian, et al. Effect of thickness on structure and properties of Cr-CrN-Cr-CrAlN multilayers[J]. Vacuum, 2023, 60(4): 1-7. [12]Fu Yingying, Li Hongxuan, Ji Li, et al. Insight into Al existing form and its role on microstructure and properties of Cr1-xAlxN films[J]. Surface and Interface Analysis, 2016, 48(1): 26-33. [13]张 健, 汤 旺, 毛 聪, 等. CrAlN硬质刀具涂层的相结构稳定性及其热分解机制[J]. 中国有色金属学报, 2016, 26(1): 88-95. Zhang Jian, Tang Wang, Mao Cong, et al. Phase structure stability and thermal decomposition mechanism of CrAlN hard tool coating[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(1): 88-95. [14]Sugishima A, Kajioka H, Makino Y. Phase transition of pseudobinary Cr-Al-N films deposited by magnetron sputtering method[J]. Surface and Coatings Technology, 1997, 97(1/3): 590-594. [15]肖新生. Cr-Al-N系涂层的成分与组织结构对其高温行为的影响[D]. 广州: 华南理工大学, 2012. [16]Endrino J L, Fox-Rabinovich G S, Reiter A, et al. Oxidation tuning in AlCrN coatings[J]. Surface and Coatings Technology, 2007, 201(8): 4505-4511. [17]高 倩, 黄美东, 王小龙, 等. 脉冲偏压占空比对复合离子镀(Cr, Al)N薄膜结构和力学性能的影响[J]. 真空, 2015, 52(3): 6-10. Gao Qian, Huang Meidong, Wang Xiaolong, et al. Impact of duty-ratio of pulsed bias on structure and properties of the(Cr, Al)N thin films by hybrid ion plating[J]. Vacuum, 2015, 52(3): 6-10. [18]李贝贝. 铝合金表面CrAlN薄膜的FCVA制备工艺及性能研究[D]. 湘潭: 湘潭大学, 2019. [19]郑康培, 刘 平, 李 伟, 等. Al含量对CrAlN涂层微观结构和力学性能的影响[J]. 真空科学与技术学报, 2011, 31(6): 686-690. Zheng Kangpei, Liu Ping, Li Wei, et al. Impacts of Al content on microstructures and mechanical properties of CrAlN coatings[J]. Chinese Journal of Vacuum Science and Technology, 2011, 31(6): 686-690. [20]郑康培, 刘 平, 李 伟, 等. AlCrN硬质涂层材料的研究进展[J]. 材料导报, 2010, 24(17): 44-48. Zheng Kangpei, Liu Ping, Li Wei, et al. Progress in research of AlCrN hard coating materials[J]. Materials Reports, 2010, 24(17): 44-48. [21]Fan Qixiang, Zhang Jiaojiao, Wu Zhenghuan, et al. Influence of Al content on the microstructure and properties of the CrAlN coatings deposited by arc ion plating[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(12): 1221-1230. [22]莫亚杰, 王明磊, 程玮杰, 等. 电弧离子镀Cr1-xAlxN硬质薄膜的成分、结构与性能[J]. 无机材料学报, 2020, 35(6): 675-681. Mo Yajie, Wang Minglei, Chen Weijie, et al. Composition, structure and properties of the Cr1-xAlxN hard films deposited by arc ion plating[J]. Journal of Inorganic Materials, 2020, 35(6): 675-681. [23]Khambun A, Buranawong A, Witit-Anun N. Effect of Al sputtering current on structure of CrAlN thin films prepared by reactive DC magnetron Co-sputtering[J]. Applied Mechanics and Materials, 2017, 866: 322-325. [24]Mayrhofer P H, Willmann H, Reiter A E. Structure and phase evolution of Cr-Al-N coatings during annealing[J]. Surface and Coatings Technology, 2008, 202(20): 4935-4938. [25]金 浩, 张莹莹, 时 卓, 等. 磁控溅射技术制备CrAlN涂层的研究进展[J]. 材料导报, 2016, 30(3): 54-59. Jin Hao, Zhang Yingying, Shi Zhuo, et al. Recent developments on magnetron sputtering of CrAlN coating[J]. Materials Reports, 2016, 30(3): 54-59. [26]关晓艳, 赵美艳, 史镐荣, 等. CrN基复合薄膜研究进展[J]. 表面技术, 2021, 50(10): 80-93. Guan Xiaoyan, Zhao Meiyan, Shi Haorong, et al. Research progress of CrN-based composite films[J]. Surface Technology, 2021, 50(10): 80-93. [27]王羽中, 史耀耀, 张国飞, 等. B和Si掺杂对CrAlN涂层结构和切削钛合金寿命的影响[J]. 表面技术, 2023, 52(10): 360-366, 393. Wang Yuzhong, Shi Yaoyao, Zhang Guofei, et al. Effects of B and Si doping on CrAlN coating structure and tool life of cutting titanium alloy[J]. Surface Technology, 2023, 52(10): 360-366, 393. [28]张而耕, 何 澄, 陈 强. Si元素掺杂CrAlSiN涂层的性能研究进展[J]. 中国陶瓷, 2018, 54(12): 7-14. Zhang Ergeng, He Cheng, Chen Qiang. Research progress on the properties of Si doped CrAlSiN coatings[J]. China Ceramics, 2018, 54(12): 7-14. [29]韩 亮, 杨 立, 陈 仙, 等. 氮化物硬质涂层中Cr、Ti和Al元素对摩擦磨损特性的影响[J]. 真空, 2012, 49(2): 47-51. Han Liang, Yang Li, Chen Xian, et al. Effects of chromium, titanium and aluminum on the friction and wear properties of nitride hard coatings[J]. Vacuum, 2012, 49(2): 47-51. [30]Tillmann W, Lopes D N F, Stangier D. Effect of Hf on the microstructure, mechanical properties, and oxidation behavior of sputtered CrAlN films[J]. Vacuum, 2018, 154: 208-213. [31]Xu Yuxiang, Hu Chun, Chen Li, et al. Effect of V-addition on the thermal stability and oxidation resistance of CrAlN coatings[J]. Ceramics International, 2018, 44(6): 7013-7019. [32]Endrino J L, Derflinger V. The influence of alloying elements on the phase stability and mechanical properties of AlCrN coatings[J]. Surface and Coatings Technology, 2005, 200(1-4): 988-992. [33]Zhou Jian, Hu Chun, Chen Li. Structure, mechanical properties and thermal stability of CrAlNbN/TiN multilayers[J]. Vacuum, 2021, 188: 110182. [34]Qi Zhengbing, Wu Zhengtao, Wang Zhoucheng. Improved hardness and oxidation resistance for CrAlN hard coatings with Y addition by magnetron co-sputtering[J]. Surface and Coatings Technology, 2014, 259: 146-151. [35]Tillmann W, Stangier D, Schröder P. Investigation and optimization of the tribo-mechanical properties of CrAlCN coatings using design of experiments[J]. Surface and Coatings Technology, 2016, 308: 147-157. [36]Tian Jinlian, Hu Chun, Chen Li, et al. Structure, mechanical and thermal properties of Y-doped CrAlN coatings[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2740-2749. [37]Hu Chun, Xu Yuxiang, Chen Li, et al. Mechanical properties, thermal stability and oxidation resistance of Ta-doped CrAlN coatings[J]. Surface and Coatings Technology, 2019, 368: 25-32. [38]Li Weizhou, Chen Quanzhi, Tomas P, et al. Influence of Zr alloying on the mechanical properties, thermal stability and oxidation resistance of Cr-Al-N coatings[J]. Applied Surface Science, 2014, 317: 269-277. [39]章 凯, 辛 丽, 程玉贤, 等. AlCr(Si)N和CrAl(Si)N涂层对TiAl合金900 ℃循环氧化性能的影响[J]. 中国表面工程, 2023, 36(4): 185-195. Zhang Kai, Xin Li, Cheng Yuxian, et al. Influence of AlCr(Si)N and CrAl(Si)N coatings on the cyclic oxidation of TiAl alloys at 900 ℃[J]. China Surface Engineering, 2023, 36(4): 185-195. [40]付泽钰, 王天国. 氮氩比对模具钢表面镀CrAlN薄膜形貌和性能的影响[J]. 表面技术, 2022, 51(1): 105-112. Fu Zeyu, Wang Tianguo. Effect of the ratio of nitrogen and argon on the microstructure and properties of CrAlN film deposited on die steel surface[J]. Surface Technology, 2022, 51(1): 105-112. [41]何泽年. 多元氮化物基复合涂层的制备及腐蚀性能研究[D]. 兰州: 兰州交通大学, 2023. [42]宋宇涛, 李春玲, 张淑珍, 等. Inconel 718合金表面纳米多层CrAlN/CrN涂层的制备及高温摩擦学性能研究[J]. 材料保护, 2023, 56(5): 63-70. Song Yutao, Li Chunling, Zhang Shuzhen, et al. Preparation and high temperature tribological properties of nano-multilayer CrAlN/CrN coating on surface of Inconel 718 alloy[J]. Materials Protection, 2023, 56(5): 63-70. [43]李鑫栋. 多元和多层CrN涂层高温性能研究[D]. 兰州: 兰州理工大学, 2023. [44]Liu Liangliang, Ruan Qingdong, Wu Zhongzhen, et al. Fabrication and cutting performance of CrAlN/CrAl multilayer coatings deposited by continuous high-power magnetron sputtering[J]. Ceramics International, 2022, 48(10): 14528-14536. [45]Li Wei, Liu Ping, Zhao Yongsheng, et al. SiNx thickness dependent morphology and mechanical properties of CrAlN/SiNx nanomultilayers[J]. Thin Solid Films, 2013, 534: 367-372. [46]Li Wei, Liu Ping, Zhao Yongsheng, et al. Structure, mechanical properties and thermal stability of CrAlN/ZrO2 nanomultilayers deposited by magnetron sputtering[J]. Journal of Alloys and Compounds, 2013, 562: 5-10. [47]Hu Chun, Wang Hui, Chen Li, et al. Structural, mechanical and thermal properties of Ti1-xSixN/CrAlN (x=0, 0.13 and 0.22) multilayers[J]. Journal of Alloys and Compounds, 2019, 800: 355-362. [48]Wang Yin, Lee J, Duh J. Mechanical strengthening in self-lubricating CrAlN/VN multilayer coatings for improved high-temperature tribological characteristics[J]. Surface and Coatings Technology, 2016, 303: 12-17. [49]杜会静, 田永君. 超硬纳米多层膜致硬机理研究[J]. 无机材料学报, 2006, 21(4): 769-775. Du Huijing, Tian Yongjun. Study on hardening mechanism of superhard nanometer multilayers[J]. Journal of Inorganic Materials, 2006, 21(4): 769-775. [50]Sproul W D. New routes in the preparation of mechanically hard films[J]. Science, 1996, 16(273): 889-892. [51]Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV=80 to ≥ 105 GPa[J]. Surface and Coatings Technology, 2000, (133-134): 152-159. [52]郭明璐, 范其香, 王铁钢. CrAlSiN纳米复合涂层的最新研究进展[J]. 材料保护, 2023, 56(12): 125-139. Guo Minglu, Fan Qixiang, Wang Tiegang. The latest research progress of CrAlSiN nanocomposite coating[J]. Materials Protection, 2023, 56(12): 125-139. [53]金玉花, 李鑫栋, 柴利强, 等. CrN和CrAlN涂层热稳定性、力学和摩擦学性能研究[J]. 表面技术, 2023, 52(8): 182-196. Jin Yuhua, Li Xindong, Chai Liqiang, et al. Thermal stability, mechanical and tribological properties of CrN and CrAlN coatings[J]. Surface Technology, 2023, 52(8): 182-196. [54]Liu P, Li W, Zhao Y. New understanding of hardening mechanism of TiN/SiNx-based nanocomposite films[J]. Nanoscale Research Letters, 2013, 8(1): 427. [55]程玮杰, 王明磊, 林国强. 电弧离子镀CrAlN-DLC硬质复合薄膜的成分、结构与性能. [J]. 无机材料学报, 2022, 37(7): 764-772. Cheng Weijie, Wang Minglei, Lin Guoqiang. Composition, structure and properties of CrAlN-DLC hard composite films deposited by arc ion plating[J]. Journal of Inorganic Materials, 2022, 37(7): 764-772. [56]Nose M, Kawabata T, Watanuki T, et al. Mechanical properties and oxidation resistance of CrAlN/BN nanocomposite coatings prepared by reactive DC and RF cosputtering[J]. Surface and Coatings Technology, 2011, 205: S33-S37. [57]Liu S J, Wheeler J M, Davis C E, et al. The effect of Si content on the fracture toughness of CrAlN/Si3N4 coatings[J]. Journal of Applied Physics, 2016, 119(2): 025305. [58]Puneet C, Krishna V, Venu Gopal A, et al. CrAlSiN nanocomposite thin films for high-speed machining applications[J]. Materials and Manufacturing Processes, 2017, 33(4): 371-377. [59]Wang Y X, Zhang S, Lee J, et al. Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite[J]. Applied Surface Science, 2013, 265: 418-423. [60]张宇飞, 巩秀芳, 蒲贤超, 等. CrAlN薄膜对汽轮机高温叶片用耐热钢高温氧化性能的影响规律[J]. 材料导报, 2023, 37(S2): 453-456. Zhang Yufei, Gong Xiufang, Pu Xianhao, et al. Influence of CrAlN coating on the oxidation behaviour of heat resistant steel blade for steam turbine blades in high-temperature air[J]. Materials Reports, 2023, 37(S2): 453-456. [61]尚伦霖, 张广安, 何东青, 等. Cr3C2-NiCr/TiSiN-CrAlN复合涂层制备及高温摩擦学行为研究[J]. 表面技术, 2022, 51(11): 70-79. Shang Lunlin, Zhang Guangan, He Dongqing, et al. Preparation and high temperature tribological behavior of Cr3C2-NiCr/TiSiN-CrAlN duplex coating[J]. Surface Technology, 2022, 51(11): 70-79. [62]Liu Junkai, Cui Zhexin, Ma Dayan, et al. Investigation of oxidation behaviors of coated Zircaloy as accident-tolerant fuel with CrAlN and CrAlSiN coatings in high-temperature steam[J]. Corrosion Science, 2020, 175: 108896. [63]Chen Li, Xu Yuxiang. Influence of interfacial structure on the mechanical and thermal properties of CrAlN/ZrN multilayer coatings[J]. Materials and Design, 2016, 106: 1-5. [64]Chen Xiao, Gao Haiqing, Bai Yanyun, et al. Thermal failure mechanism of multilayer brittle TiN/CrAlN films[J]. Ceramics International, 2018, 44(7): 8138-8144. [65]Chen Xiao, Pang Xiaolu, Meng Jie, et al. Thermal-induced blister cracking behavior of annealed sandwich-structured TiN/CrAlN films[J]. Ceramics International, 2018, 44(6): 5874-5879. |
[1] | 周浩, 王帅, 曾燕屏, 马志宝, 周德, 郭德瑞, 董树青. 长时在役Inconel 783高温合金螺栓的显微组织和力学性能[J]. 金属热处理, 2024, 49(9): 36-42. |
[2] | 陈子健, 林业佳, 李传强, 邓仁昡, 董勇, 章争荣. 微合金化调控7075铝合金的微观组织与力学性能[J]. 金属热处理, 2024, 49(9): 58-63. |
[3] | 任广笑, 王超, 曹喜娟, 王凯, 王红霞, 程伟丽, 牛晓峰. 时效处理对Mg-Y-Gd-Zn-Zr合金中LPSO相演变及性能的影响[J]. 金属热处理, 2024, 49(9): 96-102. |
[4] | 任鹏帅, 秦凤, 周骞, 赵雷杰, 崔护, 彭子奥, 武常生. 等温淬火对含铝无碳化物贝氏体钢组织和性能的影响[J]. 金属热处理, 2024, 49(9): 103-109. |
[5] | 张宇, 李圣阳, 魏晓蓼, 柴志松, 李泳. 铬合金化Q&P钢的热处理工艺优化与碳配分行为[J]. 金属热处理, 2024, 49(9): 110-116. |
[6] | 张青科, 诸汇涛, 陈根保, 陈立田, 夏亚金, 胡方勤, 宋振纶. 形变热处理对新型无Ti马氏体时效钢焊缝组织与力学性能的影响[J]. 金属热处理, 2024, 49(9): 117-124. |
[7] | 夏琳燕, 史湘琴, 刘逸卿, 周模豪, 邓蔚. 时效对铸造Al-Si-Cu-Mg合金力学性能和耐蚀性能的影响[J]. 金属热处理, 2024, 49(9): 152-157. |
[8] | 万志健, 安涛, 于文坛, 刘学华, 童乐, 赵海. 热处理工艺对42CrMo-R钢轮箍组织及力学性能的影响[J]. 金属热处理, 2024, 49(9): 158-164. |
[9] | 涂正平, 吴逸飞, 于安华, 陈晓伟, 王维俊. 超导磁体热处理对N50H不锈钢铠甲力学性能的影响[J]. 金属热处理, 2024, 49(9): 165-168. |
[10] | 赖春明, 李琴, 周家林, 吴兴欢, 黄艳. 焊后热处理对热丝TIG焊接10Cr9Mo1VNb锅炉用钢组织性能的影响[J]. 金属热处理, 2024, 49(9): 169-175. |
[11] | 刘强, 盛智勇, 张超, 李杰, 陈泽, 陈送义, 陈康华. 预变形对7085超强铝合金环件组织与性能的影响[J]. 金属热处理, 2024, 49(9): 176-184. |
[12] | 徐锋, 孙强, 贾云浩. 时效处理对15-5PH不锈钢室温和低温力学性能的影响[J]. 金属热处理, 2024, 49(9): 191-197. |
[13] | 马蓼奕, 董志, 杨立新, 李世键, 崔晶, 康冲. 淬火转移时间对16CrSiNi钢回火组织和性能的影响[J]. 金属热处理, 2024, 49(9): 198-203. |
[14] | 杨哲, 陈水胜. 时效工艺对ADC12铝合金析出相与力学性能的影响[J]. 金属热处理, 2024, 49(9): 216-220. |
[15] | 李喆, 李睿, 蔡磊, 靳军军. 固溶处理对机车车辆抱轴箱内壁堆焊层组织和力学性能的影响[J]. 金属热处理, 2024, 49(9): 226-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn