[1]赵征志, 陈伟健, 高鹏飞, 等. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报, 2020, 32(12): 1059-1076. Zhao Zhengzhi, Chen Weijian, Gao Pengfei, et al. Progress and perspective of advanced high strength automotive steel[J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076. [2]Nanda T, Singh V, Singh V, et al. Third generation of advanced high-strength steels: Processing routes and properties[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(2): 209-238. [3]张振伟, 景颂扬, 张金城, 等. Fe-8Mn-xAl-0.2C冷轧中锰钢的组织与性能[J]. 金属热处理, 2023, 48(2): 67-73. Zhang Zhenwei, Jing Songyang, Zhang Jincheng, et al. Microstructure and mechanical properties of cold-rolled Fe-8Mn-xAl-0. 2C medium Mn steel[J]. Heat Treatment of Metals, 2023, 48(2): 67-73. [4]祁晓亮, 李 岩, 定 巍, 等. 含Al中锰TRIP钢原始组织对临界退火后组织与力学性能的影响[J]. 金属热处理, 2022, 47(4): 24-29. Qi Xiaoliang, Li Yan, Ding Wei, et al. Effect of original microstructure of medium manganese TRIP steel containing Al on microstructure and mechanical properties after intercritical annealing[J]. Heat Treatment of Metals, 2022, 47(4): 24-29. [5]徐娟萍, 付 豪, 王 正, 等. 中锰钢的研究进展与前景[J]. 工程科学学报, 2019, 41(5): 557-572. Xu Juanping, Fu Hao, Wang Zheng, et al. Research progress and prospect of medium manganese steel[J]. Chinese Journal of Engineering, 2019, 41(5): 557-572. [6]Huo W F, Zhang Y, Song R B, et al. The relationship of microstructure, mechanical properties and mechanism with multi-scale analysis in 4Mn steel under different intercritical annealing temperatures[J]. Materials Science and Engineering A, 2022, 849: 143517. [7]Liu R D, Hu Z P, Lin C Q, et al. A novel design to eliminate lüders band in medium-Mn steel and its microstructure-property relationship[J]. Crystals, 2023, 13(6): 936. [8]Ding W, Wang R X, Li Y, et al. High elongation of medium-manganese steel containing 1.0wt.%Al after a short intercritical annealing time[J]. Journal of Materials Research and Technology, 2020, 9(4): 7262-7272. [9]邹 英, 刘华赛, 韩 赟, 等. 基于退火路径的中锰钢组织转变与力学性能[J]. 钢铁, 2022, 57(4): 97-104. Zou Ying, Liu Huasai, Han Yun, et al. Microstructure evolution and mechanical properties of medium manganese steel based on annealing path[J]. Iron and Steel, 2022, 57(4): 97-104. [10]Ye Q Z, Han G, Xu J P, et al. Effect of a two-step annealing process on deformation-induced transformation mechanisms in cold-rolled medium manganese steel[J]. Materials Science and Engineering A, 2022, 831: 142244. [11]Hu B, Luo H. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel[J]. Acta Materialia, 2019, 176: 250-263. [12]Zhang X L, Yan J H, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel[J]. Materials Science and Engineering A, 2021, 800: 140344. [13]董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术[J]. 钢铁, 2010, 45(7): 1-7. Dong Han, Wang Maoqiu, Weng Yuqing. Performance improvement of steels through M3 structure control[J]. Iron and Steel, 2010, 45(7): 1-7. [14]张光莹, 李 岩, 黄丽颖, 等. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452. Zhang Guangying, Li Yan, Huang Liyin, et al. Process design and microstructure control of medium manganese steel with continuous yield and high strength yield ratio[J]. Acta Metallurgica Sinica, 2024, 60(4): 443-452. [15]冯继科, 定 巍, 李 岩, 等. 1.5Al中锰钢短时临界退火后的组织与性能[J]. 金属热处理, 2022, 47(5): 136-141. Feng Jike, Ding Wei, Li Yan, et al. Microstructure and properties of 1.5Al medium-manganese steel after short time intercritical annealing[J]. Heat Treatment of Metals, 2022, 47(5): 136-141. [16]Van Dijk N H, Butt A M, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Materialia, 2005, 53(20): 5439-5447. [17]Ding W, Hedström P, Li Y. Heat treatment, microstructure and mechanical properties of a C-Mn-Al-P hot dip galvanizing TRIP steel[J]. Materials Science and Engineering A, 2016, 674: 151-157. [18]杨德振, 熊志平, 张 超, 等. 回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响[J]. 钢铁研究学报, 2021, 33(11): 1161-1170. Yang Dezhen, Xiong Zhiping, Zhang Chao, et al. Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel[J]. Journal of Iron and Steel Research, 2021, 33(11): 1161-1170. [19]Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS ) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146: 60-63. [20]孙淑华, 熊 毅, 傅万堂, 等. 共析珠光体钢在冷轧过程中的组织变化[J]. 金属学报, 2005, 41(3): 267-270. Sun Shuhua, Xiong Yi, Fu Wantang, et al. Microstructure changes of eutectoid pearlitic steel during cold rolling[J]. Acta Metallurgica Sinica, 2005, 41(3): 267-270. [21]邵成伟, 惠卫军, 张永健, 等. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201. Shao Chengwei, Hui Weijun, Zhang Yongjian, et al. Microstructure and mechanical properties of a novel cold rolled medium-Mn steel with superior strength and ductility[J]. Acta Metallurgica Sinica, 2019, 55(2): 191-201. [22]李 岩, 杜敬超, 定 巍, 等. 临界退火温度对中锰TRIP钢组织和性能的影响[J]. 钢铁研究学报, 2018, 30(3): 185-193. Li Yan, Du Jingchao, Ding Wei, et al. Influence of intercritical annealing temperature on microstructure and mechanical properties of medium Mn TRIP steel[J]. Journal of Iron and Steel Research, 2018, 30(3): 185-193. [23]Yang H S, Bhadeshia H K D H. Austenite grain size and the martensite-start temperature[J]. Scripta Materialia, 2009, 60(7): 493-495. [24]Lee S, Lee S J, Cooman B C D. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scripta Materialia, 2011, 65(3): 225-228. [25]Shao C W, Hui W J, Zhang Y J, et al. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Materials Science and Engineering A, 2017, 682: 45-53. [26]王 帅, 陈伟健, 赵征志, 等. 临界退火中锰钢的组织性能和变形行为[J]. 钢铁, 2021, 56(3): 23-28, 50. Wang Shuai, Chen Weijian, Zhao Zhengzhi, et al. Microstructure and properties as well as deformation behavior in an incritical annealing medium-Mn steel[J]. Iron and Steel, 2021, 56(3): 23-28, 50. [27]安庆生, 万德成, 马少康, 等. 逆相变退火对中锰钢组织演变和力学性能的影响[J]. 金属热处理, 2024, 49(6): 36-42. An Qingsheng, Wan Decheng, Ma Shaokang, et al. Effect of reverse phase transformation annealing on microstructure evolution and mechanical properties of medium manganese steel[J]. Heat Treatment of Metals, 2024, 49(6): 36-42. [28]张 楠, 李 岩, 定 巍. 0.2C-5Mn-0.5Si-2.5Al中锰钢临界退火后的微观组织及力学性能[J]. 金属热处理, 2021, 46(7): 37-42. Zhang Nan, Li Yan, Ding Wei. Microstructure and mechanical properties of 0.2C-5Mn-0.5Si-2.5Al medium manganese steel after intercritical annealing[J]. Heat Treatment of Metals, 2021, 46(7): 37-42. [29]Shi J, Sun X J, Wang M Q, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scripta Materialia, 2010, 63(8): 815-818. [30]彭龙生, 刘春泉, 熊 芬, 等. 轧制方式及热处理工艺对中锰钢组织和性能的影响[J]. 金属热处理, 2023, 48(8): 106-112. Peng Longsheng, Liu Chunquan, Xiong Fen, et al. Effects of rolling method and heat treatment process on microstructure and properties of medium-Mn steel[J]. Heat Treatment of Metals, 2023, 48(8): 106-112. [31]Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel[J]. Materials Science and Engineering A, 2015, 639: 559-566. [32]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science and Engineering A, 2016, 673: 63-72. [33]Hu B, Luo H W. A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity[J]. Journal of Alloys and Compounds, 2017, 725: 684-693. [34]Cai Z H, Ding H, Misra R D K, et al. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content[J]. Acta Materialia, 2015, 84: 229-236. [35]杜一飞, 闫佳鹤, 冯运莉. 中锰钢微观结构调控与强韧化机制研究进展[J]. 金属热处理, 2023, 48(4): 28-34. Du Yifei, Yan Jiahe, Feng Yunli. Research progress on microstructure regulation and strengthening and toughening mechanism of medium Mn steel[J]. Heat Treatment of Metals, 2023, 48(4): 28-34. [36]Shan T K, Li S H, Zhang W G, et al. Prediction of martensitic transformation and deformation behavior in the TRIP steel sheet forming[J]. Materials and Design, 2008, 29(9): 1810-1816. [37]张喜亮, 侯华峰, 刘 涛, 等. 一种新型高强塑积异质冷轧中锰钢的力学性能[J]. 材料研究学报, 2019, 33(12): 927-934. Zhang Xiliang, Hou Huafeng, Liu Tao, et al. Microstructure and mechanical properties of a novel heterogeneous cold-rolled medium Mn steel with high product of strength and ductility[J]. Chinese Journal of Materials Research, 2019, 33(12): 927-934. [38]Teixeira J, Moreno M, Allain S Y P, et al. Intercritical annealing of cold-rolled ferrite-pearlite steel: Microstructure evolutions and phase transformation kinetics[J]. Acta Materialia, 2021, 212: 116920. [39]Kalhor A, Soleimani M, Mirzadeh H, et al. A review of recent progress in mechanical and corrosion properties of dual phase steels[J]. Archives of Civil and Mechanical Engineering, 2020, 20(3): 1-14. |