金属热处理 ›› 2024, Vol. 49 ›› Issue (10): 8-17.DOI: 10.13251/j.issn.0254-6051.2024.10.002

• 工艺研究 • 上一篇    下一篇

预备组织对中锰钢临界退火组织演变和力学性能的影响

张坛1,2,3, 李昊彧4, 定巍1,2,3, 李岩5   

  1. 1.内蒙古科技大学 材料科学与工程学院, 内蒙古 包头 014010;
    2.内蒙古自治区新金属材料重点实验室, 内蒙古 包头 014010;
    3.内蒙古科技大学 轻稀土资源绿色提取与高效利用教育部重点实验室,内蒙古 包头 014010; 4.天津理工大学 材料科学与工程学院, 天津 300384;
    5.内蒙古科技大学 稀土产业学院, 内蒙古 包头 014010
  • 收稿日期:2024-05-13 修回日期:2024-08-05 出版日期:2024-11-28 发布日期:2024-11-28
  • 通讯作者: 定 巍,教授,博士,E-mail: adingwei@126.com
  • 作者简介:张 坛(1999—),男,硕士研究生,主要研究方向为先进高强度汽车用钢,E-mail: 1026593224@qq.com。
  • 基金资助:
    内蒙古自治区自然科学基金面上项目(2024MS05012);内蒙古自治区自然科学基金重点项目(2023ZD03)

Effect of preparatory microstructure on microstructure evolution and mechanical properties of medium manganese steel

Zhang Tan1,2,3, Li Haoyu4, Ding Wei1,2,3, Li Yan5   

  1. 1. School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China;
    2. Key Laboratory of Inner Mongolia Advanced Metal Materials, Baotou Inner Mongolia 014010, China;
    3. Key Laboratory of Green Extraction & Efficient Utilization of Light Rare Earth Resources, Ministry of Education, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China;
    4. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
    5. School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou Inner Mongolia 014010, China
  • Received:2024-05-13 Revised:2024-08-05 Online:2024-11-28 Published:2024-11-28

摘要: 针对低碳中锰钢(0.2C-5Mn-0.5Si-1.5Al)设计了一种引入预备组织的新型热处理工艺,利用SEM、EPMA、XRD和拉伸试验等手段,研究预备组织对中锰钢组织和力学性能的影响。结果表明,通过在热轧钢中引入珠光体相,成功构建了由铁素体、马氏体和珠光体组成的多相预备组织,实现了碳(C)和锰(Mn)元素在该预备组织中的差异化富集。进一步经过冷轧及临界退火处理后,获得了形貌、尺寸具有差异化的两种残留奥氏体(块状和板条状),其在拉伸试验中展现出在较大的应变范围内的协同相变诱导塑性效应。具有预备组织的试样在临界退火工艺为700 ℃保温5 min时获得最佳力学性能,抗拉强度超过1000 MPa,断后伸长率达到48%,强塑积接近50 GPa·%。与未引入预备组织的退火试样相比,本研究所采用的热处理制度不仅使得残留奥氏体的稳定性分布更为合理,而且在保持高强度水平的基础上,大幅度提高了伸长率,从而获得更为优异的强塑积。

关键词: 中锰钢, 珠光体, 残留奥氏体, 组织演变, 力学性能

Abstract: A new heat treatment process was designed for low carbon medium manganese steel (0.2C-5Mn-0.5Si-1.5Al) to introduce preparatory microstructure. The effect of the preparatory microstructure on the microstructure and properties of the medium manganese steel was studied by means of SEM, EPMA, XRD and tensile test. The results show that by introducing pearlite phase into hot-rolled steel, a multiphase preparatory microstructure composed of ferrite, martensite and pearlite is successfully established. This achieves a differentiated enrichment of C and Mn elements within the preparatory microstructure. Further cold rolling and intercritical annealing treatments result in two types of retained austenite (blocky and lath) with differentiated morphology and size. These exhibit a synergistic transformation induced plasticity effect over a large strain range in the tensile test. The specimens with preparatory microstructure achieve optimal mechanical properties through intercritical annealing process at 700 ℃ for 5 min. The tensile strength exceeds 1000 MPa, the elongation after fracture reaches 48%, and the product of strength and elongation is close to 50 GPa·%. Compared with the annealed specimens without introduction of a preparatory microstructure, the heat treatment regime used in this study not only makes the distribution of retained austenite stability more reasonable, but also significantly increases the elongation considerably while maintaining the level of high strength, resulting in an excellent product of strength and elongation.

Key words: medium manganese steel, pearlite, retained austenite, microstructure evolution, mechanical properties

中图分类号: