[1]王 鲁, 陈卓婷, 白 佳. 超超临界火电机组用P92钢管硬度异常原因分析[J]. 金属热处理, 2019, 44(10): 192-196. Wang Lu, Chen Zhuoting, Bai Jia. Cause analysis for abnormal hardness of P92 steel pipe used in ultra-supercritical thermal power unit [J]. Heat Treatment of Metals, 2019, 44(10): 192-196. [2]李 勇, 王家庆, 刘俊建, 等. 管道初始状态对P92钢细晶区组织和性能的影响研究[J]. 热加工工艺, 2024, 53(13): 75-78, 84. Li Yong, Wang Jiaqing, Liu Junjian, et al. Effect of original state of pipe on microstructure and mechanical properties of FGHAZ of P92 steel [J]. Hot Working Technology, 2024, 53(13): 75-78, 84. [3]王 学, 于淑敏, 任遥遥, 等. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202. Wang Xue, Yu Shumin, Ren Yaoyao, et al. Laves phase evolution in P92 steel during ageing [J]. Acta Metallurgica Sinica, 2014, 50(10): 1195-1202. [4]Armaki H G, Yoshimi K, Maruyama K, et al. Creep damage evaluation by hardness in advanced high Cr ferritic steels [J]. Materials Science Forum, 2007, 561-565: 2217-2220. [5]彭志方, 蔡黎胜, 彭芳芳, 等. P92钢625 ℃持久性能分段特征与各段中M23C6及Laves相相参数的定量变化研究[J]. 金属学报, 2010, 46(4): 429-434. Peng Zhifang, Cai Lisheng, Peng Fangfang, et al. Study on the multi-segment feature of 625 ℃ creep-rupture property and the quantitative change of phase parameters of M23C6 and laves phases in each segment of P92 steel [J]. Acta Metallurgica Sinica, 2010, 46(4): 429-434. [6]钟 蛟, 彭志方, 陈方玉, 等. P92钢奥氏体化后的冷却方式对650 ℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124. Zhong Jiao, Peng Zhifang, Chen Fangyu, et al. Effect of cooling modes after austenitization on stabilities of microstructure and hardness of P92 steel aged at 650 ℃ [J]. Journal of Materials Engineering, 2019, 47(1): 119-124. [7]刘正东, 程世长, 干 勇, 等. 中国600 ℃蒸汽参数火电机组用锅炉钢管国产化研制进展[J]. 钢铁, 2010, 45(10): 1-8. Liu Zhengdong, Cheng Shichang, Gan Yong, et al. Research and development of advanced boiler steel tubes and pipes used for 600 ℃ USC power plants in China [J]. Iron and Steel, 2010, 45(10): 1-8. [8]杜晋峰, 蔡文河, 王 斌, 等. 火力发电厂在役P91钢持久性能的快速评价技术[J]. 机械工程材料, 2020, 44(9): 42-46, 51. Du Jinfeng, Cai Wenhe, Wang Bin, et al. Rapid evaluation technique on stress-rupture property of in-service P91 steel of coal-fired power plants [J]. Materials for Mechanical Engineering, 2020, 44(9): 42-46, 51. [9]Pandey C, Mahapatra M M, Kumar P, et al. Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel [J]. Engineering Failure Analysis, 2019, 96: 158-167. [10]Saini N, Mulik R S, Mahapatra M M. Study on the effect of ageing on laves phase evolution and their effect on mechanical properties of P92 steel [J]. Materials Science and Engineering A, 2018, 716: 179-188. [11]史志刚, 熊 伟, 张红军, 等. P92钢长期高温服役后组织性能试验分析[J]. 热力发电, 2019, 48(6): 121-127. Shi Zhigang, Xiong Wei, Zhang Hongjun, et al. Experimental analysis on microstructure and properties of P92 steel after long-term service at high temperatures [J]. Thermal Power Generation, 2019, 48(6): 121-127. [12]王 学, 李 勇, 任遥遥, 等. Laves相析出对P92钢合金元素再分布的影响[J]. 金属学报, 2014, 50(10): 1203-1209. Wang Xue, Li Yong, Ren Yaoyao, et al. Effect of laves phase precipitation on redistribution of alloying elements in P92 steel [J]. Acta Metallurgica Sinica, 2014, 50(10): 1203-1209. [13]Fedorova I, Belyakov A, Kozlov P, et al. Laves-phase precipitates in a low-carbon 9%Cr martensitic steel during aging and creep at 923 K [J]. Materials Science and Engineering A, 2014, 615: 153-163. [14]安 威, 赵 强, 丛相州, 等. 热处理对P92钢管件硬度的影响[J]. 热加工工艺, 2016, 45(22): 249-252. An Wei, Zhao Qiang, CongXiangzhou, et al. Effects of heat treatment on hardness of P92 steel pipe[J]. Hot Working Technology, 2016, 45(22): 249-252. [15]赵勇桃, 姜亚君, 鲁海涛, 等. 热处理对国外P92钢显微组织及晶粒度的影响[J]. 金属热处理, 2020, 45(9): 57-62. Zhao Yongtao, Jiang Yajun, Lu Haitao, et al. Effect of heat treatment on microstructure and grain size of imported P92 steel [J]. Heat Treatment of Metals, 2020, 45(9): 57-62. [16]Sklenicka V, Kucharova K, Svobodova M, et al. The effect of a prior short-term ageing on mechanical and creep properties of P92 steel [J]. Materials Characterization, 2018, 136: 388-397. [17]Fujita N, Ohmura K, Yamamoto A. Changes of microstructures and high temperature properties during high temperature service of niobium added ferritic stainless steels [J]. Materials Science and Engineering A, 2003, 351: 272-281. [18]姚兵印, 周荣灿, 范长信, 等. P92钢中拉弗斯相的尺寸测量及其长大规律的动力学模拟计算[J]. 中国电机工程学报, 2010, 30(8): 94-100. Yao Bingyin, Zhou Rongcan, Fan Changxin, et al. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels [J]. Proceedings of the CSEE, 2010, 30(8): 94-100. [19]占先强, 汤文明, 刘俊建, 等. 时效粗、细晶Super304H钢的第二相析出行为及力学性能[J]. 材料热处理学报, 2023, 44(5): 152-161. Zhan Xianqing, Tang Wenming, Liu Junjian, et al. Second phase precipitation behavior and mechanical properties of aged coarse-/fine-grain Super304H steel [J]. Transactions of Materials and Heat Treatment, 2023, 44(5): 152-161. [20]程 翔, 鲍 峥, 王若民, 等. 服役态不同晶粒度TP347HFG钢管的显微组织与力学性能的对比[J]. 材料热处理学报, 2024, 45(1): 148-156. Cheng Xiang, Bao Zheng, Wang Ruomin, et al. Comparison of microstructure and mechanical properties of in-service TP347HFG steel tubes with different grain sizes[J]. Transactions of Materials and Heat Treatment, 2024, 45(1): 148-156. [21]赵勇桃, 丁 叶, 董俊慧, 等. 时效处理对P92钢组织及硬度的影响[J]. 金属热处理, 2015, 40(12): 66-70. Zhao Yongtao, Ding Ye, Dong Junhui, et al. Effect of aging on microstructure and hardness of P92 steel [J]. Heat Treatment of Metals, 2015, 40(12): 66-70. [22]康 辉. 第二相粒子对P92耐热钢的蠕变和断裂性能的影响[D]. 天津: 天津理工大学, 2021. Kang Hui. The effect of the second phase particles on the creep and fracture properties of P92 heat-resistant steel [D]. Tianjin: Tianjin University of Technology, 2021. [23]Zhan X Q, Wu Y, Liu R, et al. Investigation of the abnormally large grains of a Super304H heat-resistant steel tube over long-term, high-temperature service [J]. Journal of Testing and Evaluation, 2023, 51: 3183-3199. [24]Guo X, Gong J, Jiang Y, et al. The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature [J]. Materials Science and Engineering A, 2013, 564: 199-205. |