[1]Azarniya A, Taheri A K, Taheri K K. Recent advances in ageing of 7××× series aluminum alloys: A physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983. [2]Wang L, Bhatta L, Xiong H Q, et al. Mechanical properties and microstructure evolution of an Al-Cu-Li alloy subjected to rolling aging[J]. Journal of Central South University, 2021, 28: 1-18. [3]Xiong H Q, Su L H, Kong C, et al. Development of high performance of Al alloys via cryo-forming: A review[J]. Advanced Engineering Materials, 2021, 23(6): 1-19. [4]Lin Y C, Jiang Y Q, Zhang X C, et al. Effect of creep-aging processing on corrosion resistance of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 61: 228-238. [5]Zhang Y R, Guo K, Sun J. Investigation on the milling performance of amputating clamping supports for machining with industrial robot[J]. International Journal of Advanced Manufacturing Technology, 2019, 102: 3573-3586. [6]张 荣. 固溶处理对7050铝合金超厚板高向组织与性能的影响[D]. 长沙: 中南大学, 2012. [7]尹德都, 刘 艳, 张德清, 等. 7050铝合金厚板淬火过程的数值模拟研究[J]. 云南大学学报(自然科学版), 2022, 44(6): 1227-1232. Yin Dedu, Liu Yan, Zhang Deqing, et al. Numerical simulation study on quenching process of 7050 aluminum alloy thick plate[J]. Journal of Yunnan University (Natural Sciences Edition), 2022, 44(6): 1227-1232. [8]罗家元, 贾二锁. 淬火残余应力对铝合金厚板裂纹应力强度因子及扩展趋势的影响[J]. 金属热处理, 2020, 45(5): 210-214. Luo Jiayuan, Jia Ersuo. Effect of quenching residual stress on stress intensity factors and propagation trend of crack of aluminum alloy thick plate[J]. Heat Treatment of Metals, 2020, 45(5): 210-214. [9]昌江郁, 陈送义, 陈康华, 等. 7056铝合金厚板轧制变形不均匀性的实验研究与数值模拟[J]. 中南大学学报(自然科学版), 2018, 49(8): 1914-1921. Chang Jiangyu, Chen Songyi, Chen Kanghua, et al. Numerical simulation and experimental investigation of rolling deformation inhomogeneity of 7056 aluminum alloy thick plate[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 1914-1921. [10]王海金, 郑子樵, 范雪松. 2297-T87铝合金厚板力学性能的各向异性与厚向不均匀性[J]. 稀有金属材料与工程, 2016, 45(5): 1196-1202. Wang Haijin, Zheng Ziqiao, Fan Xuesong. Mechanical anisotropy and inhomogeneity through thickness of 2297-T87 aluminum alloy thick plate[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1196-1202. [11]李承波, 何克准, 宋丰轩, 等. 7085-T651铝合金特厚板组织性能的不均匀性[J]. 航空材料学报, 2016, 36(6): 15-22. Li Chengbo, He Kezhun, Song Fengxuan, et al. In homogeneity of microstructure and properties of 7085-T651 aluminum alloy extra-thick plate[J]. Journal of Aeronautical Materials, 2016, 36(6): 15-22. [12]丛福官. 7B50铝合金厚板组织、性能及各向异性研究[D]. 沈阳: 东北大学, 2018. Cong Fuguan. Research on microstructure, properties and anisotropy of 7B50 aluminum alloy plate[D]. Shenyang: Northeastern University, 2018. [13]陈艳霞, 张建国, 王 泓, 等. 2124铝合金各向异性的EBSD研究[J]. 金属热处理, 2011, 36(5): 79-82. Chen Yanxia, Zhang Jianguo, Wang Hong, et al. EBSD investigation on the anisotropy of 2124 aluminum alloy[J]. Heat Treatment of Metals, 2011, 36(5): 79-82. [14]冯 帅, 孙黎明, 陈志国, 等. 7056铝合金厚板的组织和性能[J]. 稀有金属材料与工程, 2018, 47(10): 3088-3095. Feng Shuai, Sun Liming, Chen Zhiguo, et al. Microstructure and mechanical properties of 7056 aluminum alloy thick plates[J]. Rare Metal Materials and Engineering, 2018, 47(10): 3088-3095. [15]王 东, 马宗义. 轧制工艺对7050铝合金显微组织和力学性能的影响[J]. 金属学报, 2008, 44(1): 49-54. Wang Dong, Ma Zongyi. Effect of rolling process on microstructure and mechanical property of 7050 aluminum alloy [J]. Acta Metallurgica Sinica, 2008, 44(1): 49-54. [16]Liu X Y, Pan O L, Fan X, et al. Microstructural evolution of Al-Cu-Mg-Ag alloy during homogenization[J]. Journal of Alloys and Compounds, 2009, 484(1-2): 790-794. [17]Robson J D. Microstructural evolution in aluminium alloy 7050 during processing[J]. Materials Science and Engineering A, 2004, 382(1/2): 112-121. [18]Li X M, Starink M J. The effect of compositional variations on the characteristics of coarse intermetallic particles in overaged 7000 Al alloys[J]. Materials Science and Technology, 2001, 17(11): 1324-1328. [19]Deshpande N U, Gokhale A M, Denzer D K, et al. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization[J]. Metallurgical and Materials Transactions A, 1998, 29(4): 1191-1201. [20]Carvalho A L M, Renaudin L B, Zara A J, et al. Microstructure analysis of 7050 aluminum alloy processed by multistage aging treatments[J]. Journal of Alloys and Compounds, 2022, 907: 164400. [21]王 聪. 大飞机2024铝合金厚板热处理工艺及热轧模拟研究[D]. 长沙: 中南大学, 2012. [22]Wang J W, Zhang S G, Lu Z F, et al. Microstructure evolution and properties comparation of industrial grade-maintained 7050-T7451 plate recycled from machining chips[J]. Journal of Materials Research and Technology, 2023, 25: 6011-6026. [23]Ferragut R, Somoza A, Tolley A. Microstrucural evolution of 7012 alloy during the early stages of artificial aging[J]. Acta Materialia, 1999, 47(17): 4355-4364. [24]陈小明, 宋仁国, 李 杰. 7×××系铝合金的研究现状及发展趋势[J]. 材料导报, 2009, 23(2): 67-70. Chen Xiaoming, Song Renguo, Li Jie. Current research status and development trends of 7××× series aluminum alloys[J]. Materials Reports, 2009, 23(2): 67-70. [25]Wang Y L, Pan Q L, Wei L L, et al. Effect of retrogression and reaging treatment on the microstructure and fatigue crack growth behavior of 7050 aluminum alloy thick plate[J]. Materials and Design, 2014, 55: 857-863. [26]魏雨虹. 热处理对7055铝合金组织及其性能的影响[D]. 哈尔滨: 哈尔滨理工大学, 2020. Wei Yuhong. Effect of Heat Treatment on microstructure and properties of 7055 aluminum alloy [D]. Harbin: Harbin University of Science and Technology, 2020. [27]谢志强. 大规格喷射成形7055铝合金组织演化及其对力学性能和淬透性影响研究[D]. 重庆: 重庆大学, 2020. Xie Zhiqiang. Study on microstructure evolution and its effect on mechanical properties and hardenability of large-size spray formed 7055 alloy [D]. Chongqing: Chongqing University, 2020. [28]冯 迪, 张新明, 刘胜胆. 非等温回归再时效对7055铝合金中厚板的厚向组织及性能均匀性的影响[J]. 中国有色金属学报, 2015, 25(11): 3000-3010. Feng Di, Zhang Xinming, Liu Shengdan. Effect of non-isothermal retrogression and re-ageing on through-thickness homogeneity of microstructure and properties in 7055 aluminum alloy medium thick plate [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 3000-3010. [29]丛福官, 赵 刚, 田 妮, 等. 7150-T7751铝合金厚板性能的不均匀性[J]. 材料研究学报, 2013, 27(2): 144-148. Cong Fuguan, Zhao Gang, Tian Ni, et al. Inhomogeneity of properties of 7150-T7751 aluminum alloy thick plate [J]. Chinese Journal of Materials Research, 2013, 27(2): 144-148. [30]Shastry C R, Judd G. A study of grain boundary precipitate-free zone formation in an Al-Zn-Mg alloy[J]. Metallurgical and Materials Transactions B, 1971, 2(12): 3283-3287. [31]陈 旭. Al-Zn-Mg-Cu合金热处理工艺及组织性能研究[D]. 长沙: 中南大学, 2012. Chen Xu. Study on the heat treatment, microstructure and properties of an Al-Zn-Mg-Cu alloy [D]. Changsha: Central South University, 2012. [32]冯 迪, 张新明, 刘胜胆, 等. 7A55铝合金厚板的微观组织和性能不均匀性[J]. 中南大学学报: 自然科学版, 2015, 46(8): 2824-2830. Feng Di, Zhang Xinming, Liu Shengdan, et al. Inhomogeneity of microstructure and properties of 7A55 aluminum alloy thick plate[J]. Journal of Central South University: Science and Technology, 2015, 46(8): 2824-2830. [33]Liu Y, Jiang D M, Li B Q, et al. Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy[J]. Materials and Design, 2014, 57: 79-86. [34]Sun Z C, Yin J L, Yang H. Microstructure evolution and microhardness of 7075 aluminum alloy during heat treatment by considering hot deformation history[J]. Advanced Materials Research, 2013, 699: 851-858. |