[1]Paulsen R, Kastka J. Effects of combined noise and vibration on annoyance[J]. Journal of Soundand Vibration, 1995, 181(2): 295-314. [2]Wegener K, Bleicher F, Heisel U, et al. Noise and vibrations in machine tools[J]. CIRP Annals, 2021, 70(2): 611-633. [3]方前锋, 金学军. 内耗与力学谱基本原理及其应用[M]. 上海: 上海交通大学出版社, 2014. [4]邱军晖, 连华东, 邹宝成, 等. 高阻尼柔性支撑技术在空间反射镜上的应用[J]. 环境技术, 2022, 40(4): 130-136. Qiu Junhui, Lian Huadong, Zou Baocheng, et al. High-damping flexible mounting technology for space mirror[J]. Environmental Technology, 2022, 40(4): 130-136. [5]林 磊, 徐德城, 陈志林, 等. 锰铜阻尼合金在管道壳壁振动缓解中的应用[J]. 噪声与振动, 2021, 41(4): 221-227. Lin Lei, Xu Decheng, Chen Zhilin, et al. Application of Mn-Cu damping alloy in pipe shell-wall vibration mitigation[J]. Noise and Vibration Control, 2021, 41(4): 221-227. [6]朱 锐, 毛保全, 赵俊严, 等. 机枪遥控武器站锰铜基阻尼合金缓冲器非线性有限元分析及试验[J]. 北京理工大学学报, 2022, 42(9): 935-946. Zhu Rui, Mao Baoquan, Zhao Junyan, et al. The nonlinear finite element analysis and experiment of Mn-Cu damping alloy buffer for remote control weapon station[J]. Transactions of Beijing Institute of Technology, 2022, 42(9): 935-946. [7]Liu W, Li N, Zhong Z, et al. Novel cast-aged MnCuNiFeZnAl alloy with good damping capacity and high usage temperature toward engineering application [J]. Materials and Design, 2016, 106: 45-50. [8]Kawahara K. Application of high-damping alloy M2052[J]. Key Engineering Materials, 2006, 319: 217-224. [9]Sun L, Vasin R N, Islamov A K, et al. Spinodal decomposition in ternary Mn-Cu-Cr alloy and its influence on martensitic transition temperatures[J]. Journal of Alloys and Compounds, 2021, 884: 161082. [10]吴 楠, 祝 哮, 杨 路, 等. Al-Cu-Mn合金铸锭均匀化工艺及组织性能分析[J]. 有色金属材料与工程, 2020, 41(5): 22-27. Wu Nan, Zhu Xiao, Yang Lu, et al. Homogenization process and analysis on microstructure and properties of Al-Cu-Mn alloy ingot[J]. Nonferrous Metal Materials and Engineering, 2020, 41(5): 22-27. [11]Zhong Z, Liu W, Li N, et al. Mn segregation dependence of damping capacity of as-cast M2052 alloy[J]. Materials Science and Engineering A, 2016, 660: 97-101. [12]Zhang S, You W X, Xu Y G, et al. Microstructure and properties of Mn-Cu-based damping alloys prepared by ball milling and hot-press sintering[J]. Journal of Materials Engineering and Performance, 2019, 28(3): 1-8. [13]Sun L, Sumnikov S V, Islamov A K, et al. Spinodal decomposition influence of austenite on martensitic transition in a Mn-13at.%Cu alloy[J]. Journal of Alloys and Compounds, 2021, 853: 157061. [14]邓华铭, 陈树川. 锰基高阻尼合金的研究进展[J]. 金属功能材料, 2000, 7(2): 1-6. Deng Huaming, Chen Shuchuan. General review of present research on Mn-based high damping alloys[J]. Metallic Functional Materials, 2000, 7(2): 1-6. [15]康梓铭, 张冬云, 汪承杰, 等. 热处理对选区激光熔化成形M2052合金组织性能的影响[J]. 表面技术, 2019, 48(5): 132-138. Kang Ziming, Zhang Dongyun, Wang Chengjie, et al. Effect of heat treatment on microstructure and properties of M2052 alloy by selective laser melting[J]. Surface Technology, 2019, 48(5): 132-138. [16]王敬丰, 凌 闯, 胡耀波, 等. 热处理对Mn-Cu合金微观组织和阻尼性能的影响[J]. 功能材料, 2011, 42(10): 1902-1906. Wang Jingfeng, Ling Chuang, Hu Yaobo, et al. Effect of heat treatment on microstructure and damping capacity of Mn-Cu alloy[J]. Journal of Functional Materials, 2011, 42(10): 1902-1906. [17]Yin F X, Ohsawa Y, Sato A, et al. Phase decomposition of the γ phase in a Mn-30at.%Cu alloy during aging[J]. Acta Materialia, 2000, 48(6): 1273-1282. |