[1]Sumita M, Hanawab T, Teohc S H. Development of nitrogen containing nickel free austenitic stainless steels for metallic biomaterials-review[J]. Materials Science and Engineering C, 2004, 24(6/7/8): 753-760. [2]Milititsky M, De Wispelaere N, Petrov R, et al. Characterization of the mechanical properties of low-nickel austenitic stainless steels[J]. Materials Science and Engineering A, 2008, 498(1/2): 289-295. [3]李 志, 高 谦, 何 冰, 等. 节镍型奥氏体不锈钢1Cr17Mn9Ni4N的组织和力学性能[J]. 钢铁研究学报, 2005, 17(2): 68-71. Li Zhi, Gao Qian, He Bing, et al. Microstructure and mechanical properties of 1Cr17Mn9Ni4N steel[J]. Journal of Iron and Steel Research, 2005, 17(2): 68-71. [4]张仲秋, 李新亚, 娄延春, 等. 含氮不锈钢研究的进展[J]. 铸造, 2002, 51(11): 661-665. Zhang Zhongqiu, Li Yaxin, Lou Yanchun, et al. Advance in research of nitrogen contained stainless steels[J]. Foundry, 2002, 51(11): 661-665. [5]曾 垚, 杨剑洪, 王 碧, 等. 节镍型奥氏体不锈钢的组织性能对比[J]. 金属热处理, 2020, 45(6): 163-166. Zeng Yao, Yang Jianhong, Wang Bi, et al. Comparison of microstructure and properties of low-nickel austenitic stainless steels[J]. Heat Treatment of Metals, 2020, 45(6): 163-166. [6]吴海林, 阮志勇, 王 碧, 等. 节镍型奥氏体不锈钢组织性能及控制机理研究[J]. 轧钢, 2022, 39(3): 17-22. Wu Hailin, Ruan Zhiyong, Wang Bi, et al. Study on microstructure, mechanical properties and control mechanism of low-nickel austenitic stainless steel[J]. Steel Rolling, 2022, 39(3): 17-22. [7]罗兴壮, 罗庆革, 杨剑洪, 等. 低镍奥氏体不锈钢冷轧边裂原因分析[J]. 轧钢, 2021, 38(4): 89-93. Luo Xingzhuang, Luo Qingge, Yang Jianhong, et al. Cause analysis of edge crack of low nickel austenitic stainless steel strip during cold rolling[J]. Steel Rolling, 2021, 38(4): 89-93. [8]邢长军, 廖 辉, 宁小智, 等. 新型节镍奥氏体不锈钢的成分设计及生产试制[J]. 钢铁, 2021, 56(4): 93-97.Xing Changjun, Liao Hui, Ning Xiaozhi, et al. Composition design and trial production of new nickel saving austenitic stainless steel[J]. Iron and Steel, 2021, 56(4): 93-97. [9]黄俊霞. 客车车辆用含氮奥氏体不锈钢的研究[D]. 上海: 上海交通大学, 2013. [10]Kim Y H, Kim K Y, Lee Y D. Nitrogen-alloyed, metastable austenitic stainless steel for automotive structural applications[J]. Materialsand Manufacturing Processes, 2004, 19(1): 51-59. [11]Mahajan S, Pande C, Imam M, et al. Formation of annealing twins in fcc crystals[J]. Acta Materialia, 1997, 45: 2633-2638. [12]Frankel G S. Pitting corrosion of metals: A review of the critical factors[J]. Cheminform, 1998, 29(32): 2186-2197. [13]Dutta R S, Jagannath, Dey G K, et al. Characterization of microstructure and corrosion properties of cold worked alloy 800[J]. Corrosion Science, 2006, 48(9): 2711-2726. [14]Zhang Y, Li M, Bi H. The mechanism of pitting initiation and propagation at deformation bands intersection of cold-rolled metastable stainless steel in acidic ferric chloride solution[J]. Journal of Materials Science, 2019, 54: 14914-14925. [15]Mudali U K, Shankar P, Ningshen S, et al. On the pitting corrosion resistance of nitrogen alloyed cold worked austenitic stainless steels[J]. Corrosion Science, 2002, 44(10): 2183-2198. [16]Luo H, Su H Z, Ying G B, et al. Effect of cold deformation on the electrochemicalbehaviour of 304L stainless steel in contaminated sulfuric acid environment[J]. Applied Surface Science, 2017, 425: 628-638. |