[1]Yang M, Wu X, Gong X, et al. Interfacial microstructure and mechanical properties of TC4 titanium alloy/316L stainless steel joint brazed with Ag70.5Cu27.5Ti2 filler metal[J]. Transactions of the Indian Institute of Metals, 2021, 74(8): 1907-1916. [2]Zhang H, Li J, Ma P, et al. Study on microstructure and impact toughness of TC4 titanium alloy diffusion bonding joint[J]. Vacuum, 2018, 152: 272-277. [3]刘 坤, 李亚江, 王 娟. Super-Ni叠层复合材料与钛合金过渡液相扩散焊界面组织特征[J]. 焊接学报, 2018, 39(6): 57-60. Liu Kun, Li Yajiang, Wang Juan. Interfacial microstructure of transient liquid phase diffusion bonding joint of super-Ni laminated composites to titanium alloy[J]. Transactions of the China Welding Institution, 2018, 39(6): 57-60. [4]Adomako N K, Noh S, Oh C S, et al. Laser deposition additive manufacturing of 17-4PH stainless steel on Ti-6Al-4V using V interlayer[J]. Materials Research Letters, 2019, 7(7): 259-266. [5]Claire G, Marae D J, Abdelhamid H, et al. 2D characterization at submicron scale of crack propagation of 17-4PH parts produced by atomic diffusion additive manufacturing (ADAM) process[J]. Procedia Structural Integrity, 2021, 34: 13-19. [6]Lawrence B D, Henry T C, Phillips F, et al. High-cycle tension-tension fatigue performance of additively manufactured 17-4 PH stainless steel[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(1/2): 777-786. [7]Tillmann W, Henning T, Wojarski L. Vacuum brazing of 316L stainless steel based on additively manufactured and conventional material grades[J]. IOP Conference Series: Materials Science and Engineering, 2018, 373: 012023. [8]刘世锋, 魏 钢, 王 岩, 等. 增材制造17-4PH马氏体不锈钢研究进展[J]. 中国冶金, 2022, 32(6): 15-25. Liu Shifeng, Wei Gang, Wang Yan, et al. Research progress on additive manufacturing of 17-4PH martensitic stainless steel[J]. China Metallurgy, 2022, 32(6): 15-25. [9]李 帅, 夏月庆, 王星星, 等. 钛合金/钢异种材料熔化焊研究现状[J]. 材料导报, 2022, 36(14): 188-194. Li Shuai, Xia Yueqing, Wang Xingxing, et al. Research status for the fusion welding between titanium alloy and steel[J]. Materials Reports, 2022, 36(14): 188-194. [10]Li J, Wang H, Liu K, et al. Effect of laser power on the microstructure and property of ZrB2/ZrC in-situ reinforced coatings on zirconium alloy by laser cladding[J]. Vacuum, 2023, 213: 112104. [11]Li P, Li C, Dong H, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2022, 909: 164698. [12]刘 坤, 王俊迪, 黄伟奔, 等. 叠层材料与钛合金扩散焊界面裂纹形态及萌生扩展机理[J]. 江苏科技大学学报(自然科学版), 2022, 36(6): 39-44. Liu Kun, Wang Jundi, Huang Weiben, et al. Interfacial crack morphology, initiation and propagation mechanism of diffusion bonding laminated composite to titanium alloy[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2022, 36(6): 39-44. [13]Galati M, Minetola P. Analysis of density, roughness, and accuracy of the atomic diffusion additive manufacturing (ADAM) process for metal parts[J]. Materials, 2019, 12(24): 4122. [14]Pablo B, Rubén P, Mario D M. Evaluation of the performance of atomic diffusion additive manufacturing electrodes in electrical discharge machining[J]. Materials, 2022, 15(17): 5953. [15]Tahsin T O, Andrew B, Juan I A, et al. The effect of surface and post-processing on mechanical properties of 17-4PH stainless steel produced by the atomic diffusion additive manufacturing process (ADAM)[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130: 4053-4066. [16]Xu Ruiwen, Dong Pengpeng, Tang Liang, et al. Interface evolution behaviors and shear strength of vacuum diffusion bonded 45 steel/additive manufactured 316L stainless steel joints[J]. Journal of Materials and Research and Technology, 2024, 30: 8553-8562. [17]Xu Ruiwen, Zhu Yi, Li Bingnan, et al. Interface behaviors and mechanical properties of diffusion bonded 45 steel/additive manufactured 316L steel joints[J]. Journal of Materials and Research and Technology, 2024, 30: 1279-1287. [18]李 佳, 盛光敏, 黄 利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59. Li Jia, Sheng Guangmin, Huang Li. Impulse pressuring diffusion bonding of TiC cermet to stainless steel using Ti/Nb interlayer[J]. Journal of Materials Engineering, 2017, 45(3): 54-59. [19]Jian S, Liu K, Li J, et al. Effect of interlayer on interfacial microstructure and properties of Ni80Cr20/TC4 vacuum diffusion bonded joint[J]. Vacuum, 2023, 208: 111738. [20]Negemiya A, Selvarajan R, Sonar T. Effect of diffusion bonding time on microstructure and mechanical properties of dissimilar Ti6Al4V titanium alloy and AISI 304 austenitic stainless steel joints[J]. Materials Testing, 2023, 65(1): 77-86. [21]Thirunavukatasu G, Kundu S. High-strength diffusion-bonded joints of 17-4 stainless steel and T64 alloy using nickel and copper bilayer[J]. Journal of Materials Engineering and Performance, 2019, 29(1): 515-528. [22]Johnson B C, Bauer C L, Jordan A G. Mechanisms of interdiffusion in copper/nickel thin-film couples[J]. Journal of Applied Physics, 1986, 59(4): 1147-1155. [23]Wierzba B, Skibinski W. The interdiffusion in copper-nickel alloys[J]. Journal of Alloys and Compounds, 2016, 687: 104-108. |