[1]Gu D, Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting[J]. Materials Science and Engineering A, 2010, 527(29): 7585-7592. [2]Zhang X, Guo Z, Chen C, et al. Additive manufacturing of WC-20Co components by 3D gel-printing[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 215-223. [3]Yap C Y, Chua C K, Dong Z L, et al. Review of selective laser melting: Materials and applications[J]. Applied Physics Reviews, 2015, 2(4): 041101-041122. [4]严程铭, 薛程鹏, 田光元, 等. 金属光固化3D打印研究现状[J]. 工程科学学报, 2023, 45(12): 2037-2048. Yan Chengming, Xue Chengpeng, Tian Guangyuan, et al. Review of the stereolithographic 3D printing of metals[J]. Chinese Journal of Engineering, 2023, 45(12): 2037-2048. [5]杨广宇, 汤慧萍, 刘 楠, 等. 粉床型电子束增材制造W-Nb合金的缺陷及显微组织[J]. 材料导报, 2021, 35(S2): 448-451. Yang Guangyu, Tang Huiping, Liu Nan, et al. Defect and microstructure of W-Nb alloy fabricated by selective electron beam melting[J]. Materials Reports, 2021, 35(S2): 448-451. [6]Cain V, Thijs L, Van Humbeeck J, et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting[J]. Additive Manufacturing, 2015, 5: 68-76. [7]张仁奇, 樊 磊, 周宝刚, 等. 选区激光熔化316L不锈钢的各向组织与性能[J]. 金属热处理, 2020, 45(9): 161-166. Zhang Renqi, Fan Lei, Zhou Baogang, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions[J]. Heat Treatment of Metals, 2020, 45(9): 161-166. [8]魏水淼, 马 盼, 张志宇, 等. 选区激光熔化制备AlCoCrFeNi高熵合金的成形性能[J]. 金属热处理, 2022, 47(12): 28-35. Wei Shuimiao, Ma Pan, Zhang Zhiyu, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions[J]. Heat Treatment of Metals, 2022, 47(12): 28-35. [9]Zhang D H, Bai D P, Liu J, et al. Formability behaviors of 2A12 thin-wall part based on DYNAFORM and stamping experiment[J]. Composites Part B: Engineering, 2013, 55: 591-598. [10]Zhao Y X, Wang H, Zhang L, et al. Study on the microstructure and properties of WC-12Co cemented carbide fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2022, 20: 3512-3521. [11]Liu J Y, Chen J, Liu B, et al. Microstructure evolution of WC-20Co cemented carbide during direct selective laser melting[J]. Powder Metallurgy, 2020, 63(5): 359-366. [12]Liu J Y, Chen J, Zhou L, et al. Role of Co content on densification and microstructure of WC-Co cemented carbides prepared by selective laser melting[J]. Acta Metallurgica Sinica, 2021, 34(9): 1245-1254. [13]Liu J Y, Chen J, Lu Y, et al. WC grain growth behavior during selective laser melting of WC-Co cemented carbides[J]. Acta Metallurgica Sinica, 2023, 36(6): 949-961. [14]Bricín D, Ackermann M, Jansa Z, et al. Development of the structure of cemented carbides during their processing by SLM and HIP[J]. Metals, 2020, 10(11): 1477-1493. [15]Ibe H, Kato Y, Yamada J, et al. Controlling WC/Co two-phase microstructure of cemented carbides additive-manufactured by laser powder bed fusion: Effect of powder composition and post heat-treatment[J]. Materials and Design, 2021, 210: 110034. [16]吕周晋, 李好峰, 车立达, 等. HIP温度对SLM制备TC4钛合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(6): 138-142. Lü Zhoujin, Li Haofeng, Che Lida, et al. Effect of HIP temperature on microstructure and mechanical properties of TC4 titanium alloy prepared by SLM[J]. Heat Treatment of Metals, 2022, 47(6): 138-142. [17]张伟祥, 唐超兰, 陈志茹, 等. 退火温度对激光选区熔化成形TC4钛合金组织及力学性能的影响[J]. 金属热处理, 2019, 44(6): 122-127. Zhang Weixiang, Tang Chaolan, Chen Zhiru, et al. Effect of annealing temperature on microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting[J]. Heat Treatment of Metals, 2019, 44(6): 122-127. [18]Oghbaei M, Mirzaee O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. Journal of Alloys and Compounds, 2010, 494(1/2): 175-189. [19]Xing M, Wang H, Zhao Z, et al. Additive manufacturing of cemented carbides inserts with high mechanical performance[J]. Materials Science and Engineering A, 2022, 861: 144350. |