[1]Wen X, Wan M P, Huang C W, et al. Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy[J]. Materials and Design, 2019, 180: 107898. [2]Wang H, Xin S W, Zhao Y Q, et al. Plane strain fracture behavior of a new high strength Ti-5Al-3Mo-3V-2Zr-2Cr-1Nb-1Fe alloy during heat treatment[J]. Materials Science and Engineering A, 2020, 797: 140080. [3]Huang Z R, Xiao H, Yu J X, et al. Effects of different annealing cooling methods on the microstructure and properties of TA10 titanium alloys[J]. Journal of Materials Research and Technology, 2022, 18: 4859-4870. [4]黄海广, 周荣锋, 马国栋, 等. 电弧熔炼TA10钛合金中hcp/bcc结构结晶取向计算[J]. 稀有金属, 2022, 46(4): 451-460. Huang Haiguang, Zhou Rongfeng, Ma Guodong, et al. Calculation of crystallographic orientation of hcp/bcc structures in TA10 titanium alloy prepared by arc smelting[J]. Chinese Journal of Rare Metals, 2022, 46(4): 451-460. [5]Li L, Ma G D, Huang H G, et al. Flow behavior analysis and prediction of flow instability of a lamellar TA10 titanium alloy[J]. Materials Characterization, 2022, 194: 112403. [6]徐梦喜, 刘仁慈, 黄海广, 等. TA10钛合金热连轧板材显微组织及其性能[J]. 特种铸造及有色合金, 2023, 43(4): 543-549. Xu Mengxi, Liu Renci, Huang Haiguang, et al. Microstructure and properties of hot continuous rolling plate of TA10 titanium alloy[J]. Special Casting and Nonferrous Alloys, 2023, 43(4): 543-549. [7]陶 欢, 孙二举, 宋德军, 等. 固溶时效对TA10钛合金组织与力学性能的影响[J]. 热加工工艺, 2019, 48(12): 153-155. Tao Huan, Sun Erju, Song Dejun, et al. Effects of solution and aging on microstructure and mechanical properties of TA10 titanium alloy[J]. Hot Working Technology, 2019, 48(12): 153-155. [8]苏娟华, 邵 鹏, 任凤章. TA10钛合金的高温拉伸断裂极限[J]. 金属热处理, 2018, 43(4): 24-28. Su Juanhua, Shao Peng, Ren Fengzhang. Tensile fracture limit of TA10 titanium alloy at high temperature[J]. Heat Treatment of Metals, 2018, 43(4): 24-28. [9]张明玉, 运新兵, 伏洪旺. 热处理冷却方式对TC10钛合金组织与性能的影响[J]. 金属热处理, 2022, 47(8): 98-105. Zhang Mingyu, Yun Xinbing, Fu Hongwang. Effect of cooling method of heat treatment on microstructure and properties of TC10 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(8): 98-105. [10]朱宝辉, 曾卫东, 陈 林, 等. 固溶时效工艺对Ti-6Al-6V-2Sn钛合金棒材组织及性能的影响[J]. 中国有色金属学报, 2018, 28(4): 677-684. Zhu Baohui, Zeng Weidong, Chen Lin, et al. Influences of solution and aging treatment process on microstructure and mechanical properties of Ti-6Al-6V-2Sn titanium alloy rods[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(4): 677-684. [11]Zhang M Y, Yun X B, Fu H W. Effect of BASC and BASCA heat treatment on microstructure and mechanical properties of TC10 titanium alloy[J]. Materials, 2022, 15(22): 8249. [12]贺志荣, 王 芳. 热处理对Ti-50.6Ni形状记忆合金相变和显微组织的影响[J]. 材料热处理学报, 2023, 44(5): 95-103. He Zhirong, Wang Fang. Effect of heat treatment on phase transformation and microstructure of Ti-50.6Ni shape memory alloy[J]. Transactions of Materials and Heat Treatment, 2023, 44(5): 95-103. [13]Pere B V, Verona B O, Sabine S, et al. Tracking the α″ martensite decomposition during continuous heating of a Ti-6Al-6V-2Sn alloy[J]. Acta Materialia, 2017, 135: 132-143. [14]Li S, Xiong B, Hui S, et al. Comparison of the fatigue and fracture of Ti-6Al-2Zr-1Mo-1V with lamellar and bimodal microstructures[J]. Materials Science and Engineering A, 2007, 460: 140-145. [15]Huang C, Wang F, Wen X, et al. Tensile property and impact toughness of Ti-55531 alloy with multilevel lamellar microstructure[J]. Journal of Materials Science, 2021, 56: 8848-8870. [16]张明玉, 运新兵, 伏洪旺. 固溶时效处理对TC11钛合金组织与冲击性能的影响[J]. 稀有金属材料与工程, 2023, 52(5): 1759-1766. Zhang Mingyu, Yun Xinbing, Fu Hongwang. Effect of solution and aging treatment on microstructure and impact properties of TC11 titanium alloy[J]. Rare Metal Materials and Engineering, 2023, 52(5): 1759-1766. [17]卢凯凯, 周立鹏, 李敏娜, 等. 强韧化热处理对TA15钛合金组织和性能的影响[J]. 材料热处理学报, 2020, 41(1): 44-49. Lu Kaikai, Zhou Lipeng, Li Minna, et al. Effect of strengthening and toughening heat treatment on microstructure and mechanical properties of TA15 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2020, 41(1): 44-49. [18]Xu J, Zeng W, Zhao Y, et al. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy[J]. Materials Science and Engineering A, 2016, 676(31): 434-440. [19]Chung W C, Tsat L W, Chen C. Microstructure and notch properties of heat-treated Ti-4.5Al-3V-2Mo-2Fe laser welds[J]. Materials Transactions, 2009, 50(3): 544-550. [20]尹雁飞, 贾蔚菊, 李思兰, 等. 双重时效对TC29钛合金显微组织的影响[J]. 稀有金属材料与工程, 2019, 48(9): 3001-3006. Yin Yanfei, Jia Weiju, Li Silan, et al. Influence of duplex aging on microstructure of TC29 titanium alloy[J]. Rare Metal Materials and Engineering, 2019, 48(9): 3001-3006. |