[1]Speidel Markus O, Diener Markus. Recent developments in stainless steels: Austenitic, ferritic, duplex[J]. Baosteel Technical Research, 2010, 4(S1): 80. [2]王元清, 袁焕鑫, 石永久, 等. 不锈钢结构的应用和研究现状[J]. 钢结构, 2010, 25(2): 1-12, 18. Wang Yuanqing, Yuan Huanxin, Shi Yongjiu, et al. A review of current applications and research of stainless steel structure[J]. Steel Construction, 2010, 25(2): 1-12, 18. [3]Karjalainen L P, Taulavuori T, Sellman M, et al. Some strengthening methods for austenitic stainless steels[J]. Steel Research International, 2008, 79: 404-412. [4]Zheng R X, Zhang Z, Nakatani M, et al. Enhanced ductility in harmonic structure designed SUS316L produced by high energy ball milling and hot isostatic sintering[J]. Materials Science and Engineering A, 2016, 674: 212-220. [5]Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels[J]. Metal Science, 1982, 16: 245-253. [6]Olson G B, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations[J]. Journal of the Less Common Metals, 1972, 28: 107-118. [7]Newell H M, Todd S G, Yannis P K. Martensite formation in conventional and isothermal tension of 304 austenitic stainless steel measured by X-ray diffraction[J]. Metallurgical and Materials Transactions A, 2014, 45: 4891-4896. [8]杨 钒, 黄建龙. 304奥氏体不锈钢应变诱发马氏体的研究[J]. 材料热处理学报, 2012, 33(3): 104-109. Yang Fan, Huang Jianlong. Study on strain induced martensite in 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 104-109. [9]徐钦华, 彭志贤, 李明扬, 等. 304H不锈钢冷拔过程马氏体转变和力学及磁性能变化规律[J]. 塑性工程学报, 2020, 27(7): 130-138. Xu Qinhua, Peng Zhixian, Li Mingyang, et al. Evolution of mechanical and magnetic properties and martensite transformation during cold drawing of 304H stainless steel[J]. Journal of Plasticity Engineering, 2020, 27(7): 130-138. [10]Tomimura K, Takaki S, Tokunaga Y. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels[J]. ISIJ International, 1991, 31: 1431-1437. [11]Ueji R, Tsuji N, Minamino Y, et al. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite[J]. Acta Materialia, 2002, 50: 4177-4189. [12]Guy K B, Butler E P, West D R. Reversion of bcc α′ martensite in Fe-Cr-Ni austenitic stainless steels[J]. Metal Science, 1983, 17: 167-176. [13]Ma Y, Jin J, Lee Y. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel[J]. Scripta Materialia, 2005, 52: 1311-1315. [14]Mostafa N, Hamed M, Mohammad A. Toward unraveling the mechanisms responsible for the formation of ultrafine grained microstructure during tempering of cold rolled martensite[J]. Materials Science and Engineering A, 2016, 670: 252-255. [15]Mostafa E, Abbas Z H, Hamid R A. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels[J]. Materials and Design, 2013, 45: 674-681. [16]Axel K, Peter H, Magnus O. Reverse martensitic transformation and resulting microstructure in a cold rolled metastable austenitic stainless steel[J]. Steel Research International, 2008, 79: 433-439. [17]麻永林, 宫美娜, 邢淑清, 等. 低温退火对301B高硬不锈弹簧钢性能的影响[J]. 塑性工程学报, 2014, 21(6): 91-95. Ma Yonglin, Gong Meina, Xing Shuqing, et al. Low-temperature annealing effects on the property of extra hard stainless steel spring[J]. Journal of Plasticity Engineering, 2014, 21(6): 91-95. [18]桂莹莹, 明瑞贞, 龙元宁, 等. 低温退火对冷轧奥氏体不锈钢带硬度和组织的影响[J]. 金属热处理, 2010, 35(8): 15-18. Gui Yingying, Ming Ruizhen, Long Yuanning, et al. Effect of low-temperature annealing on hardness and microstructure of cold rolled austenitic stainless steel strip[J]. Heat Treatment of Metals, 2010, 35(8): 15-18. [19]Lee S H, Lee J C, Choi J Y, et al. Effects of deformation strain and aging temperature on strain aging behavior in a 304 stainless steel[J]. Metals and Materials International, 2010, 16: 21-26. [20]Angel T. Formation of Martensite in austenitic stainless steels[J]. Journal of Iron and Steel Research International, 1954, 177. [21]Han H N, Lee C G, Suh D W, et al. A microstructure-based analysis for transformation induced plasticity and mechanically induced martensitic transformation[J]. Materials Science and Engineering A, 2008, 485(1/2): 224-233.[22]Han H N, Oh C S, Kim G, et al. Design method for TRIP-aided multiphase steel based on a microstructure-based modelling for transformation-induced plasticity and mechanically induced martensitic transformation[J]. Materials Science and Engineering A, 2009, 499(1/2): 462-468. [23]Amar K D, David C M, Martin C M, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scripta Materialia, 2004, 50(12): 1445-1449. [24]张明赫, 严 翔, 吴翼铭, 等. 高能X射线衍射在先进高强钢塑性变形研究中的应用[J]. 塑性工程学报, 2022, 29(9): 1-10. Zhang Minghe, Yan Xiang, Wu Yiming, et al. Application of high-energy X-ray diffraction in research of plastic deformation of advanced high-strength steels[J]. Journal of Plasticity Engineering, 2022, 29 (9): 1-10. |