[1]葵怀福. 真空渗碳工艺和设备[J]. 真空, 1978(4): 19-30. [2]Luiten C H, Limque F, Bless F. Carburizing in vacuum furnace[C]//Heat Treatment 1979. Birmingham, 1979: 20. [3]包静佩, 田 桐, 周 莉, 等. 真空渗碳工艺试验[J]. 金属热处理, 1978(4): 31-35. Bao Jingpei, Tian Tong, Zhou Li, et al. Vacuum carburizing process test[J]. Heat Treatment of Metals, 1978(4): 31-35. [4]Stratton P F, Bruce S, Cheetham V. Low-pressure carburizing systems: A review of current technology[J]. BHM Berg-und Hüttenmännische Monatshefte, 2006, 151(11): 451-456. [5]刘仁家, 濮绍雄. 真空热处理与设备[M]. 北京: 宇航出版社, 1984. [6]Adedipe O, Medupin R O, Yoro K O, et al. Sustainable carburization of low carbon steel using organic additives: A review[J]. Sustainable Materials and Technologies, 2023, 38: e00723. [7]马森林, 高文栋, 沈玉明. ECM低压真空渗碳技术应用研究与探讨[J]. 汽车工艺与材料, 2004(8): 27-30. Ma Senlin, Gao Wendong, Shen Yuming. Application researches and discussion on ECM low pressure vacuum carburizing technology[J]. Automobile Technology and Material, 2004(8): 27-30. [8]敖自强. 柔性真空热处理生产线[J]. 金属加工: 热加工, 2007(4): 62-64. [9]佟晓辉, 吕东显. 欧洲热处理技术装备考察报告—法国ECM公司[J]. 热处理技术与装备, 2023, 44(4): 74-78. [10]Abdenour S, Linda A, Oualid C, et al. Influence of the carburization time on the structural and mechanical properties of XC20 steel[J]. Materials Research Express, 2021, 8: 085604. [11]Supriyono S, Jamasri J. Holding time effect of pack carburizing on fatigue characteristic of v-notch shaft steel specimens[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1855(1): 020005. [12]赵振东. 低压真空渗碳气淬技术的应用[J]. 国外金属热处理, 2005, 26(3): 33-34. [13]Liu L D, Chen F S. Super-carburization of low alloy steel in a vacuum furnace[J]. Surface and Coatings Technology, 2004, 183(2/3): 233-238. [14]吕虎跃, 陈旭阳, 丛培武, 等. 第二相析出强化真空渗碳淬火工艺[J]. 金属热处理, 2023, 48(5): 236-240. Lü Huyue, Chen Xuyang, Cong Peiwu, et al. Second phase precipitation strengthening process of vacuum carburizing and quenching[J]. Heat Treatment of Metals, 2023, 48(5): 236-240. [15]张明皓, 韩颢源, 徐跃明, 等. 真空渗碳 18CrNiMo7-6 钢中碳化物的析出规律[J]. 金属热处理, 2022, 47(5): 171-176. Zhang Minghao, Han Haoyuan, Xu Yueming, et al. Carbide precipitation law in vacuum carburized 18CrNiMo7-6 steel[J]. Heat Treatment of Metals, 2022, 47(5): 171-176. [16]牛志芳. 真空渗碳热处理技术的研究与探讨[J]. 农机使用与维修, 2023(6): 99-101. Niu Zhifang. Research and discussion of vacuum carburizing heat treatment technology[J]. Agricultural Machinery Using and Maintenance, 2023(6): 99-101. [17]Kula P, Kaczmarek L, Dybowski K, et al. Activation of carbon deposit in the process of vacuum carburizing with preliminary nitriding[J]. Vacuum, 2013, 87: 26-29. [18]李卓程, 田 勇, 王 斌, 等. 预渗氮处理对20CrMnTi钢真空渗碳层耐蚀性能的影响[J]. 金属热处理, 2022, 47(10): 211-217. Li Zhuocheng, Tian Yong, Wang Bin, et al. Effect of pre-nitriding on corrosion resistance of 20CrMnTi steel vacuum carburized layer[J]. Heat Treatment of Metals, 2022, 47(10): 211-217. [19]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science and Technology, 1999, 15(3): 193-197. [20]Dong M, Cui X, Lu B, et al. Influence of surface nanocrystallization pretreatment on high-temperature vacuum carburizing behavior[J]. Journal of Materials Processing Technology, 2020, 278: 116519. [21]董美伶. 齿轮钢表面纳米化/离子注入辅助真空渗碳复合强化机制[D]. 哈尔滨: 哈尔滨工程大学, 2019. Dong Meiling. Composite strengthening mechanism of vacuum carburizing of gera steel assisted by surface nanocrystallization/ion implantation[D]. Harbin: Harbin Engineering University, 2019. [22]张秀芳, 谭起兵, 林 磊. 含稀土 20CrMo 钢渗碳工艺对组织和性能的影响[J]. 热加工工艺, 2016, 45(6): 217-219. Zhang Xiufang, Tan Qibing, Lin Lei. Effects of carburizing process on microstructure and properties of 20CrMo steel containing rare earth[J]. Hot Working Technology, 2016, 45(6): 217-219. [23]李彩云. 离子注入镧/钇对20Cr2Ni4A渗碳层接触疲劳性能的影响研究[D]. 天津: 河北工业大学, 2020. Li Caiyun. Effect of ion implantation lanthanum/yttrium on contact fatigue performance of 20Cr2Ni4A carburized layer[D]. Tianjin: Hebei University of Technology, 2020. [24]江志华, 佟小军, 孙 枫, 等. 复合化学热处理13Cr4Mo4Ni4VA钢摩擦磨损性能研究[J]. 航空材料学报, 2011, 31(4): 39-44. Jiang Zhihua, Tong Xiaojun, Sun Feng, et al. Investigation of sliding wear characteristics of vacuum-carburized, duplex-hardened and plasma-sulfurized 13Cr4Mo4Ni4VA steel[J]. Journal of Aeronautical Materials, 2011, 31(4): 39-44. [25]李少龙. 复合渗对 M50NiL 钢滚动接触疲劳性能的影响[D]. 贵阳: 贵州大学, 2023. Li Shaolong. Effect of composite infiltration on rolling contact fatigue properties of M50NiL steel[D]. Guiyang: Guizhou University, 2023. [26]Zajusz M, Tkacz-S'miech K, Danielewski M. Modeling of vacuum pulse carburizing of steel[J]. Surface and Coatings Technology, 2014, 258: 646-651. [27]Gupta G S, Chaudhuri A, Kumar P V. Modelling, simulation, and graphical user interface for industrial gas carburising process[J]. Metal Science Journal, 2002, 18(10): 1188-1194. [28]宋广胜, 刘相华, 王国栋, 等. 22CrMo钢渗碳淬火过程组织与应力变化的数值模拟[J]. 钢铁研究学报, 2006, 18(10): 40-44. Song Guangsheng, Liu Xianghua, Wang Guodong, et al. Numerical simulation of microstructure and stress in carburizing and quenching process of 22CrMo steel[J]. Journal of Iron and Steel Research, 2006, 18(10): 40-44. [29]宋华华, 于 芸, 刘汇河, 等. TC11钛合金的真空渗碳工艺[J]. 金属热处理, 2014, 39(12): 67-69. Song Huahua, Yu Yun, Liu Huihe, et al. Vaccum carburizing of TC11 titanium alloy[J]. Heat Treatment of Metals, 2014, 39(12): 67-69. [30]李 佳, 闫晓东, 杨 银, 等. Ta及Ta-W合金真空渗碳工艺研究[J]. 稀有金属, 2018, 42(9): 925-930. Li Jia, Yan Xiaodong, Yang Yin, et al. Vacuum carburization process of Ta and Ta-W alloys[J]. Chinese Journal of Rare Metals, 2018, 42(9): 925-930. [31]Di C, Yan X, Lv X, et al. Effect of vacuum carburizing time on microstructure and mechanical properties of tantalum carbide layer[J]. Metals and Materials International, 2021, 27: 5008-5016. [32]金荣植. 先进的模具真空热处理技术与应用[J]. 金属加工(热加工), 2016(7): 9-12. [33]陈向荣, 何孝美. 冷挤压模热处理工艺的研究[J]. 热加工工艺, 2013, 42(8): 198, 201. Chen Xiangrong, He Xiaomei. Study on heat treatment process of cold extrusion die[J]. Hot Working Technology, 2013, 42(8): 198, 201. [34]王大庸, 周兴久, 张仲林, 等. W6Mo5Cr4V2高速钢刀具真空渗碳的组织与性能研究[J]. 大连理工大学学报, 1983(4): 85-92. Wang Dayong, Zhou Xingjiu, Zhang Zhonglin, et al. Study on the microstructure and properties of W6Mo5Cr4V2 high speed steel tools after vacuum carburization[J]. Journal of Dalian University of Technology, 1983(4): 85-92. [35]夏克仁. 机床渗碳零件金相检验中几个问题的分析[J]. 理化检验: 物理分册, 1978(3): 10-13. Xia Keren. Analysis of several problems in metallographic inspection of carburized machine tool parts[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 1978(3): 10-13. [36]黄建斌, 高东海. 机床主轴渗碳淬火工艺改进[J]. 金属热处理, 2005, 30(10): 76. Huang Jianbin, Gao Donghai. Improvement on carburizing and quenching process for spindle of machine tool[J]. Heat Treatment of Metals, 2005, 30(10): 76. [37]张 明. 机床传动主轴用 40CrNiMo 合金钢的热处理工艺研究[J]. 热加工工艺, 2014, 43(20): 207-210. Zhang Ming. Study on heat treatment process of 40CrNiMo steel for transmission of machine tool spindle[J]. Hot Working Technology, 2014, 43(20): 207-210. [38]王 同, 丛培武, 王 赫, 等. 20CrMo钢滑块真空低压渗碳[J]. 金属热处理, 2017, 42(12): 189-192. Wang Tong, Cong Peiwu, Wang He, et al. Vacuum low pressure carburizing of 20CrMo steel slider[J]. Heat Treatment of Metals, 2017, 42(12): 189-192. [39]罗 燕, 刘义翔, 班 君, 等. 不同处理工艺轴承套圈的近表层硬度及残余应力[J]. 理化检验: 物理分册, 2017, 53(7): 477-481. Luo Yan, Liu Yixiang, Ban Jun, et al. Hardness and residual stress of near surface of bearing rings with different treatment processes[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2017, 53(7) 477-481. [40]余加邦, 梁益龙, 邹江河, 等. 复合表面改性对 M50NiL 钢拉压疲劳寿命的影响[J]. 中南大学学报: 自然科学版, 2022, 53(4): 1209-1219. Yu Jiabang, Liang Yilong, Zou Jianghe, et al. Effect of composite surface modification on tension-compression fatigue life of carburized M50NiL steel[J]. Journal of Central South University(Science and Technology), 2022, 53(4): 1209-1219. [41]许 浩, 唐梦兰, 赵新浩. 先进热处理和表面处理工艺技术助力航空齿轮绿色制造[J]. 航空动力, 2022(3): 71-74. Xu Hao, Tang Menglan, Zhao Xinhao. Advanced heat and surface treatment technology promating green manufacturing of aviation gear[J]. Aerospace Power, 2022(3): 71-74. [42]高文栋. 别克自动变速器零件在低压真空渗碳炉上的热处理[J]. 现代零部件, 2006(1): 68-69. Gao Wendong. Heat treatment of Buick automatic transmission parts in a low pressure vacuum carburizing furnace[J]. Auto Manufacturing Engineer, 2006(1): 68-69. [43]金荣植. 精密汽车齿轮的真空热处理技术与装备[J]. 汽车工艺师, 2012(1): 67-71. Jin Rongzhi. Vacuum heat treatment technology and equipment for precision automotive gears[J]. Auto Manufacturing Engineer, 2012(1): 67-71. [44]舒银坤, 汪 杰. 低压渗碳技术在汽车变速箱行业中的应用[J]. 金属加工(热加工), 2018(8): 6-9. [45]陈 荣, 李炎铮, 黄 新, 等. 渗碳方法对滚珠丝杠轴组织与性能的影响[J]. 上海金属, 2020, 42(5): 37-41. Chen Rong, Li Yanzheng, Huang Xin, et al. Effect of carburizing procedures on microstructure and property of threaded spindle[J]. Shanghai Metals, 2020, 42(5): 37-41. [46]殷和平, 徐跃明, 殷敏洁, 等. 工业机器人精密减速器输入轴的真空低压渗碳高压气淬工艺[J]. 金属热处理, 2022, 47(5): 177-182. Yin Heping, Xu Yueming, Yin Minjie, et al. Vacuum low pressure carburizing and high pressure gas quenching process of pinion shaft of precision reducer for industrial robot[J]. Heat Treatment of Metals, 2022, 47(5): 177-182. [47]李建辉, 魏 强, 高 博, 等. RV减速器摆线轮的渗碳热处理工艺设计与组织性能[J]. 材料热处理学报, 2023, 44(1): 157-163. Li Jianhui, Wei Qiang, Gao Bo, et al. Carburizing heat treatment process design and microstructure properties of cycloid gear of RV reducer[J]. Transactions of Materials and Heat Treatment, 2023, 44(1): 157-163. [48]刘 潇. 高铁轴承套圈渗碳热处理仿真技术及工艺研究[D]. 北京: 北京交通大学, 2020. Liu Xiao. Research on simulation technology and process of carburizing heat treatment for bearing rings of high-speed rail[D]. Beijing: Beijing Jiaotong University, 2020. [49]张云平. 采煤机重载齿轮渗碳效率预测的关键要素分析[J]. 煤矿机电, 2022, 43(4): 26-30. Zhang Yunping. Analysis of key factors for predicting carburizing efficiency of heavy-duty gears of shearers machines[J]. Colliery Mechanical and Electrical Technology, 2022, 43(4): 26-30. |