[1]Meng S, Zhang T, Zhang K, et al. Effect ofintercritical annealing temperature on microstructure and mechanical properties of V-Ti-Mo microalloyed medium Mn steel[J]. Materials Today Communications, 2024, 38: 108391. [2]Castan C, Montheillet F, Perlade A. Dynamic recrystallization mechanisms of an Fe-8%Al low density steel under hot rolling conditions[J]. Scripta Materialia, 2013, 68(6): 360-364. [3]齐程伟, 董福涛, 代 鑫, 等. 热轧工艺对Fe-30Mn-9Al-1C-3Cu低密度钢组织性能的影响[J]. 中国冶金, 2024, 36(6): 74-82. Qi Chengwei, Dong Futao, Dai Xin, et al. Effect of hot rolling process on microstructure and mechanical properties of Fe-30Mn-9Al-1C-3Cu low-density steel[J]. Chian Metallurgy, 2024, 36(6): 74-82. [4]丁 奔, 蔡 军, 张 兵, 等. GH4169稀土强化镍基高温合金热变形行为[J]. 塑性工程学报, 2023, 30(9): 131-141. Ding Ben, Cai Jun, Zhang Bing, et al. Hot deformation behavior of GH4169 rare earth reinforced Ni-base superalloy[J]. Journal of Plasticity Engineering, 2023, 30(9): 131-141. [5]Zhao Ting, Rong Shengwei, Hao Xiaohong, et al. Effect of Nb-V microalloying on hot deformation characteristics and microstructures of Fe-Mn-Al-C austenitic steel[J]. Materials Characterization, 2022, 183: 111595. [6]Mozumder Yahya H, Babu Arun K, Saha Rajib, et al. Flow characteristics and hot workability studies of a Ni-containing Fe-Mn-Al-C lightweight duplex steel[J]. Materials Characterization, 2018, 146: 1-14. [7]Wan Peng, Kang Tao, Li Feng, et al. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel[J]. Journal of Materials Research and Technology, 2021, 15: 1059-1068. [8]Liu Jinxu, Li Leilei, Yang Shanwu, et al. Effect of intragranular κ carbides and intergranular precipitates on the hot deformation mechanism and dynamic recrystallization mechanism of Fe-28Mn-11Al-1.5C-5Cr lightweight steel[J]. Journal of Materials Research and Technology, 2023, 27: 2346-2362. [9]张 婧, 王存宇, 王 辉, 等. 奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究[J]. 钢铁研究学报, 2023, 35(4): 434-442. Zhang Jing, Wang Cunyu, Wang Hui, et al. Research on hot deformation behavior of austenite Fe30Mn9Al0.9C low density steel[J]. Journal of Iron and Steel Research, 2023, 35(4): 434-442. [10]付志强, 何国爱, 吴赟杰, 等. 新型Co-Ni基高温合金的热变形行为及微观组织演变[J]. 金属热处理, 2024, 49(2): 1-7. Fu Zhiqiang, He Guoai, Wu Yunjie, et al. Hot deformation behavior and microstructure evolution of a novel Co-Ni-based superalloy[J]. Heat Treatment of Metals, 2024, 49(2): 1-7. [11]Zhang Ke, Zhang Tenghao, Zhang Mingya, et al. Hot deformation behavior, dynamic recrystallization mechanism and processing maps of Ti-V microalloyed high strength steel[J]. Journal of Materials Research and Technology, 2023, 25: 4201-4215. [12]唐 珲, 涂露寒, 黎 颖, 等. 耐热钢2Cr12Ni4Mo3VNbN的热变形行为[J]. 金属热处理, 2023, 48(11): 22-28. Tang Hui, Tu Luhan, Li Ying, et al. Hot deformation behavior of heat-resistant steel 2Cr12Ni4Mo3VNbN[J]. Heat Treatment of Metals, 2023, 48(11): 22-28. [13]霍巍丰, 宋仁伯, 张 宇, 等. Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb中锰钢的热变形行为研究[J]. 轧钢, 2023, 40(1): 17-22. Huo Weifeng, Song Renbo, Zhang Yu, et al. Research on hot deformation behavior of Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb medium Mn steel[J]. Steel Rolling, 2023, 40(1): 17-22. [14]杜忠泽, 齐泽江, 党 雪, 等. SCM435钢的热压缩流变行为及组织演变[J]. 金属热处理, 2024, 49(1): 76-83. Du Zhongze, Qi Zejiang, Dang Xue, et al. Rheological behavior and microstructure evolution of SCM435 steel under thermal compression[J]. Heat Treatment of Metals, 2024, 49(1): 76-83. [15]Zambrano Q A, Valdes J, Aguilai Y, et al. Hot deformation of a Fe-Mn-Al-C steel susceptible of k-carbide precipitation[J]. Materials Science and Engineering A, 2017, 689: 269-285. [16]Hamada A S, Karjalainen L P, Somani M C, et al. Deformation mechanisms in high-Al bearing high-Mn TWIP steels in hot compression and in tension at low temperatures[J]. Materials Science Forum, 2007, 550: 217-222. [17]Zhang Jingqi, Di Hongshuang, Wang Xiaoyu, et al. Constitutive analysis of the hot deformation behavior of Fe-23Mn-2Al-0.2C twinning induced plasticity steel in consideration of strain[J]. Materials & Design, 2013, 44: 354-364. [18]Guo Zhikai, Li Longfei. Influences of alloying elements on warm deformation behavior of high-Mn TRIP steel with martensitic structure[J]. Materials & Design, 2016, 89: 665-675. [19]Hamada A S, Karjalainen L P, Somani M C. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels[J]. Materials Science and Engineering A, 2007, 467(1): 114-124. [20]Hamada Atef, Juuti Timo, Khosravifard Ali, et al. Effect of silicon on the hot deformation behavior of microalloyed TWIP-type stainless steels[J]. Materials & Design, 2018, 154: 117-129. [21]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22: 1545-1558. [22]刘 宁, 旷五洲, 陈 俊. 含钒高锰LNG储罐用钢热变形行为及组织演变研究[J]. 轧钢, 2023, 40(5): 25-31. Liu Ning, Kuang Wuzhou, Chen Jun. Study on hot deformation behaviors and microstructure evolution of V-bearing high Mn steel for LNG tank[J]. Steel Rolling, 2023, 40(5): 25-31. [23]孙文明, 李韶林, 宋克兴, 等. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 224-231. Sun Wenming, Li Shaolin, Song Kexing, et al. Hot deformation behavior and processing diagram of as-cast Cu-1.16Ni-0.36Cr alloy[J]. Materials Reports, 2024, 38(2): 224-231. [24]Miahra Bidyapati, Singh Vajinder, Sarkar Rajdeep, et al. Dynamic recovery and recrystallization mechanisms in secondary B2 phase and austenite matrix during hot deformation of Fe-Mn-Al-C-(Ni) based austenitic low-density steels[J]. Materials Science and Engineering A, 2022, 842: 143095. [25]Ji Hongbin, Wang Jianmei, Wang Zhenyu, et al. The effect of high-temperature ECAP on dynamic recrystallization behavior and material strength of 42CrMo steel[J]. Materials Science and Engineering A, 2023, 887: 145732. [26]Pei Yanbo, Yuan Meng, Wei Enbo, et al. Effect of strain rate on dynamic recrystallization mechanism of Mg-Gd-Y-Sm-Zr alloy during hot compression[J]. Journal of Materials Research and Technology, 2023, 25: 5038-5050. |