[1]张 震, 王鸿斌, 王 贺, 等. 汽车车身板用变形铝合金研究进展[J]. 精密成形工程, 2022, 14(1): 71-78. Zhang Zhen, Wang Hongbin, Wang He, et al. Research progress of wrought aluminum alloy for automobile body sheet[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 71-78. [2]房洪杰, 刘 慧, 孙 杰, 等. 5×××系铝合金研究现状及发展趋势[J]. 材料导报, 2023(21): 1-15. Fang Hongjie, Liu Hui, Sun Jie, et al. Research status and development trend of 5××× series aluminum alloys[J]. Material Reports, 2023(21): 1-15. [3]郑雪芹. 汽车新材料的应用及发展趋势[J]. 汽车纵横, 2021(11): 73-76. Zheng Xueqin. Application and development trend of new automotive materials[J]. Auto Review, 2021(11): 73-76. [4]胡 斌. 汽车行业发展对轻质结构部件的需求与展望[J]. 精密成形工程, 2020, 12(3): 120-124. Hu Bin. Demand and prospect for lightweight structural components in automotive industry[J]. Journal of Netshape Forming Engineering, 2020, 12(3): 120-124. [5]苑锡妮, 杨 兵, 曾 渝, 等. 5×××系铝合金汽车板研究进展[J]. 轻合金加工技术, 2018(6): 8-13. Yuan Xini, Yang Bing, Zeng Yu, et al. Research development of 5××× series Al alloy sheet for automotive[J]. Light Alloy Fabrication Technology, 2018(6): 8-13. [6]Ramer L, Phillippi M, Tack W T, et al. Locally reversing sensitization in 5××× aluminum plate[J]. Journal of Materials Engineering and Performance, 2012, 21(6): 1025-1029. [7]麻慧琳, 吴万东, 徐志远, 等. 不同变形量 5182-O 铝合金汽车板 PLC 效应表现和吕德斯带演变[J]. 精密成形工程, 2023, 15(12): 50-57. Ma Huilin, Wu Wandong, Xu Zhiyuan, et al. PLC effect and Luders band performance of 5182-O aluminum alloy automotive plate under different deformation[J]. Journal of Netshape Forming Engineering, 2023, 15(12): 50-57. [8]Reyne B, Manach P Y, Mos N. Macroscopic consequences of Piobert-Lüders and Portevin-Le Chatelier bands during tensile deformation in Al-Mg alloys[J]. Materials Science and Engineering A, 2019, 746. [9]Coër J, Manach P Y, Laurent H, et al. Piobert-Lüders plateau and Portevin-Le Chatelier effect in an Al-Mg Alloy in simple shear[J]. Mechanics Research Communications, 2013, 48: 1-7. [10]Cottrell A H, Bilby B A. Dislocation theory of yielding and stain ageing of iron[J]. Proceedings of the Physical Society, 1949, 62(1): 49-62. [11]Wu C H, Li H, Bian T J, et al. Natural aging behaviors of Al-Cu-Li alloy: PLC effect, properties and microstructure evolution[J]. Materials Characterization, 2022, 184. [12]曹高辉, 苑锡妮, 曹零勇. 5754-O铝合金吕德斯带表面缺陷解决方案的应用[J]. 宝钢技术, 2022(3): 56-62. Cao Gaohui, Yuan Xini, Cao Lingyong. Application of surface defect solution of 5754-O aluminum[J]. Baosteel Technology, 2022(3): 56-62. [13]Kang J R, Liu X, Wang T Z. The effects of ultrasonic vibration on Portevin-Le Chatelier (PLC) effect and stress-strain behavior in aluminum alloy 2024[J]. Scripta Materialia, 2023, 224: 115121 . [14]曹鹏涛. 铝合金中Portevin-Le Chatelier效应的多尺度实验和机理研究[D]. 合肥: 中国科学技术大学, 2010: 72-73. Cao Pengtao. Muliti-scale experimental and theoretical investigations on the Porevin-Le Chatelier effect in Al alloy[D]. Hefei: University of Science and Technology of China, 2010: 72-73. [15]刘颢文, 张青川, 曹鹏涛, 等. Al-Mg合金中析出强化相对Portevin-Le Chatelier效应的影响[J]. 实验力学, 2007(Z1): 390-394. Liu Haowen, Zhang Qingchuan, Cao Pengtao, et al. The influence of the precipitation on the Portevin-Le Chatelier effect in Al-Mg alloy[J]. Journal of Experimental Mechanics, 2007(Z1): 390-394. [16]黎 凤, 许泽兵, 任月路, 等. 预拉伸对5182-O和5754-O铝合金屈服平台的影响[J]. 轻合金加工技术, 2020, 48(11): 26-31, 45. Li Feng, Xu Zebing, Ren Yuelu, et al. Influence of pre-stretching on yield platform of 5182-O and 5754-O aluminum alloys[J]. Light Alloy Fabrication Technology, 2020, 48(11): 26-31, 45. [17]马青梅, 李菁菁, 张国文, 等. 退火及冷却方式对 5182 铝合金屈服平台的影响[J]. 材料热处理学报, 2019, 40(9): 21-25. Ma Qingmei, Li Jingjing, Zhang Guowen, et al. Effect of annealing and cooling rate on yield plateau of 5182 alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 21-25. [18]孟凡林, 曹零勇, 王 宇, 等. 冷轧变形量及完全退火对汽车用5182板材组织和性能的影响[J]. 有色金属加工, 2015, 44(5): 28-32. Meng Fanlin, Cao Linyong, Wang Yu, et al. Effects of cold rolling reduction and full annealing on microstructures and properties of 5182 aluminum alloys for ABS[J]. Nonferrous Metals Processing, 2015, 44(5): 28-32. [19]王 宇, 曹零勇, 李俊鹏, 等. 中间退火对汽车用5182铝合金板组织和性能的影响[J]. 材料工程, 2016, 44(9): 76-81. Wang Yu, Cao Lingyong, Li Junpeng, et al. Effect of intermediate annealing on microstructure and property of 5182 aluminum alloy sheet for automobile[J]. Journal of Materials Engineering, 2016, 44(9): 76-81. [20]张希园. 中间退火对高镁铝合金组织和力学性能的影响[J]. 轻合金加工技术, 2023, 51(4): 11-14. Zhang Xiyuan. Effect of intermediate annealing on the microstructure and mechanical properties of high magnesium aluminum alloy[J]. Light Alloy Fabrication Technology, 2023, 51(4): 11-14. [21]章国华, 曹 城. 中间退火对5182铝合金模组外箱体表面褶皱的改善[C]//中国有色金属加工工业协会, 2020, 8: 206-213. Zhang Guohua, Cao Cheng. Improvement of surface folding of 5182 aluminum alloy module by intermediate annealing[C]//China Nonferrous Metal Processing Industry Association, 2020, 8: 206-213. [22]王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南大学出版社, 2005: 70-73. Wang Zhutang, Tian Rongzhang. Aluminum Alloy and Its Processing Manual[M]. Changsha: Central South University Press, 2005: 70-73. [23]Jobba M, Mishra R K, Niewczas M, et al. Flow stress and work-hardening behaviour of Al-Mg binary alloys[J]. International Journal of Plasticity, 2015, 65: 43-60. |