[1]Li J, Jing L, Zheng X, et al. Application and outlook of information and intelligence technology for safe and efficient TBM construction[J]. Tunnelling and Underground Space Technology, 2019, 93: 103097. [2]Tang B, Cheng H, Tang Y, et al. Experiences of gripper TBM application in shaft coal mine: A case study in Zhangji coal mine, China[J]. Tunnelling and Underground Space Technology, 2018, 81: 660-668. [3]洪开荣, 王杜娟, 郭如军. 我国硬岩掘进机的创新与实践[J]. 隧道建设, 2018, 38(4): 519-537. Hong Kairong, Wang Dujuan, Guo Rujun. Innovation and practice of hard rock TBM in China[J]. Tunnel Construction, 2018, 38(4): 519-537. [4]Lin L, Mao Q, Xia Y, et al. Experimental study of specific matching characteristics of tunnel boring machine cutter ring properties and rock[J]. Wear, 2017, 378/379: 1-10. [5]Wang L, Li H, Zhao X, et al. Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead[J]. Tunnelling and Underground Space Technology, 2017, 67: 147-157. [6]冯欢欢, 王树英, 杨露伟, 等. 复杂地质条件下TBM刀具失效形式及原因分析与应对措施[J]. 隧道建设, 2022, 42(1): 130-136. Feng Huanhuan, Wang Shuying, Yang Luwei, et al. Forms and causes of failure in tunnel boring machine cutters under complex geological conditions and corresponding countermeasures[J]. Tunnel Construction, 2022, 42(1): 130-136. [7]Zabett A, Azghandi S H M. Simulation of induction tempering process of carbon steel using finite element method[J]. Materials and Design, 2012, 36: 415-420. [8]Saputro I E, Chen C P, Jheng Y S, et al. Mobile induction heat treatment of large-sized spur gear—The effect of scanning speed and air gap on the uniformity of hardened depth and mechanical properties[J]. Steel Research International, 2023, 94: 2200261. [9]Liu L, Yu H, Yang Z, et al. Optimization of induction quenching processes for HSS roll based on MMPT model[J]. Metals, 2019, 9: 663. [10]Li J, Zhang P, Hu J, et al. Study of the synergistic effect of induction heating parameters on heating efficiency using Taguchi method and response surface method[J]. Applied Sciences, 2023, 13: 555. [11]Khalifa M, Barka N, Brousseau J, et al. Sensitivity study of hardness profile of 4340 steel disc hardened by induction according to machine parameters and geometrical factors[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101: 209-221. [12]Baldan M, Stolte M H, Nacke B, et al. Improving the accuracy of FE simulations of induction tempering toward a microstructure-dependent electromagnetic model[J]. IEEE Transactions on Magnetics, 2020, 56: 1-9. [13]张永乐, 吴玉庭, 张灿灿, 等. 熔盐电磁感应加热器的数值模拟与分析[J]. 太阳能学报, 2021, 42(8): 243-250. Zhang Yongle, Wu Yuting, Zhang Cancan, et al. Numerical simulation and analysis of molten salt electromagnetic induction heater[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 243-250. [14]陈素明, 杨 平, 任树锋, 等. 30CrMnSiNi2A 钢轴类零件感应热处理的数值模拟[J]. 金属热处理, 2023, 48(4): 235-244. Chen Suming, Yang Ping, Ren Shufeng, et al. Numerical simulation of induction heat treatment of 30CrMnSiNi2A steel shaft parts[J]. Heat Treatment of Metals, 2023, 48(4): 235-244. [15]付晓斌. 基于高频感应加热的大模数齿轮轧制成形及微观组织研究[D]. 北京: 北京科技大学, 2018. Fu Xiaobin. Research on the deformation and microstructure evolution of large-modulus gear using cross rolling with high frequency induction heating process[D]. Beijing: University of Science and Technology Beijing, 2018. [16]Xing F, Zheng S G, Liu Z H, et al. Flow field, temperature field, and inclusion removal in a new induction heating tundish with bent channels[J]. Metals, 2019, 9(5): 561-576. [17]孙建亮, 邱丑武, 毕雪峰, 等. 感应加热与传统加热模式大型筒节加热效果研究[J]. 机械工程学报, 2017, 53(10): 25-33. Sun Jianliang, Qiu Chouwu, Bi Xuefeng, et al. Study on heating effect of heavy cylinder with induction heating and conventional heating[J]. Journal of Mechanical Engineering, 2017, 53(10): 25-33. |