金属热处理 ›› 2025, Vol. 50 ›› Issue (1): 12-21.DOI: 10.13251/j.issn.0254-6051.2025.01.002

• 材料研究 • 上一篇    下一篇

高强耐蚀铁基中熵合金的组织与性能

代春朵1,2, 李江文1,2, 郭呈宇1,2, 张勇3, 孙美慧1,2, 李天怡1,2, 巩俐1,2, 潘悦4   

  1. 1.海洋装备用金属材料及其应用国家重点实验室, 辽宁 鞍山 114009;
    2.鞍钢集团北京研究院有限公司, 北京 102200;
    3.北京科技大学 新金属材料国家重点实验室, 北京 100083;
    4.海南大学 材料科学与工程学院, 海南 海口 570228
  • 收稿日期:2024-08-05 修回日期:2024-11-02 出版日期:2025-01-25 发布日期:2025-03-12
  • 通讯作者: 潘 悦,讲师,博士,E-mail:panyue0130@126.com
  • 作者简介:代春朵(1988—),女,工程师,博士,主要研究方向为腐蚀与防护,E-mail:daichunduo@163.com。
  • 基金资助:
    国家自然科学基金(52101068)

Microstructure and properties of high-strength corrosion-resistant Fe-based medium entropy alloys

Dai Chunduo1,2, Li Jiangwen1,2, Guo Chengyu1,2, Zhang Yong3, Sun Meihui1,2, Li Tianyi1,2, Gong Li1,2, Pan Yue4   

  1. 1. State Key Laboratory of Metal Materials for Marine Equipment and Application, Anshan Liaoning 114009, China;
    2. Ansteel Beijing Research Institute Co., Ltd., Beijing 102200, China;
    3. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
    4. School of Materials Science and Engineering, Hainan University, Haikou Hainan 570228, China
  • Received:2024-08-05 Revised:2024-11-02 Online:2025-01-25 Published:2025-03-12

摘要: 利用Python语言编辑Thermal-Calc指令进行合金相组成的高效计算,依据设计原则获得两种L21析出相比例大于15%的铁基中熵合金。采用大变形冷轧结合中温时效工艺进行组织调控以获得优异的强塑性匹配。结果表明,1号合金抗拉强度及伸长率分别为1592 MPa、17.50%,2号合金抗拉强度及伸长率分别为1682 MPa、13.50%。与此同时,两种合金在3.5wt%NaCl溶液中都形成了稳定的钝化膜,点蚀电位接近0 V(vs SCE),具有良好耐蚀性。两种合金基体相主要为FCC固溶体,并有少量的BCC相,大变形冷轧配合中温时效使得合金具有未完全回复的细小晶粒组织,伴有多相多尺度析出相形成,与FCC基体形成软硬相配合,提高合金的强塑性。析出强化、位错强化及细晶强化共同作用提高合金强度。合金的高塑性是由于中温时效缓解应力集中,FCC基体的良好塑性可以有效减缓裂纹形成及裂纹扩展,加之Heusler_L21相与基体的低错配度也能减缓相界微裂纹的形成,使得两种中熵合金保持高塑性。

关键词: 中熵合金, Thermal-Calc, 耐蚀性能, 强韧机理, 析出相

Abstract: Using Python language to edit Thermal-Calc instructions for efficient calculation of alloy phase composition, two iron-based medium entropy alloys with L21 precipitation ratio greater than 15% were obtained according to design principles. Adopting large deformation cold rolling combined with medium temperature aging process for microstructure control to achieve excellent strength plasticity matching. The results show that the tensile strength and elongation of No.1 alloy are 1592 MPa and 17.50%, respectively, while that of No.2 alloy are 1682 MPa and 13.50%, respectively. At the same time, both the alloys form stable passivation films in a 3.5wt% NaCl solution, with a pitting potential close to 0 V(vs SCE) and good corrosion resistance. The main matrix phase of the two alloys is FCC solid solution, with a small amount of BCC phase. The combination of large deformation cold rolling and medium temperature aging results in the alloy having an incomplete recovery of fine grain structure, accompanied by the formation of multiphase and multi-scale precipitation phases, which form a soft and hard coordination with the FCC matrix to improve the strength and plasticity of the alloy. The combined effect of precipitation strengthening, dislocation strengthening and grain refinement strengthening enhances the strength of alloys. The high plasticity of the alloy is due to the relief of stress concentration during medium temperature aging. The good plasticity of the FCC matrix can effectively slow down the formation and propagation of cracks. In addition, the low mismatch between Heusler_L21 phase and the matrix can also slow down the formation of microcracks at the phase boundary, allowing the two medium entropy alloys to maintain high plasticity.

Key words: medium entropy alloy, Thermal-Calc, corrosion resistance, strengthening and toughening mechanism, precipitates

中图分类号: