[1]李 健, 佟 石, 杨 洋, 等. 船舶及海洋工程用耐蚀E36钢板的性能分析[J]. 鞍钢技术, 2019(3): 26-31. Li Jian, Tong Shi, Yang Yang, et al. Analysis on properties of corrosion-resistant E36 steel plate for ship-building and marine engineering[J]. Angang Technology, 2019(3): 26-31. [2]吴彦杰, 董瑞峰, 张肖雨, 等. 微量稀土元素对海洋平台用钢腐蚀性能的影响[C]//中国腐蚀与防护学会. 第十二届全国腐蚀与防护大会论文集, 2023: 2. [3]肖红亮, 张慧杰. 海洋平台用钢EH36-Z35连续冷却转变及正火工艺[J]. 金属热处理, 2023, 48(7): 201-205. Xiao Hongliang, Zhang Huijie. Continuous cooling transformation and normalizing process of EH36-Z35 steel for offshore platform[J]. Heat Treatment of Metals, 2023, 48(7): 201-205. [4]孙铭延, 孙立根, 刘云松, 等. 大线能量焊接船板钢Mg处理效果分析[J]. 河北冶金, 2022(9): 15-19, 63. Sun Mingyan, Sun Ligen, Liu Yunsong, et al. Analysis of Mg treatment effect of large wire energy welded ship plate steel[J]. 2022(9): 15-19, 63. [5]冯立果, 靳芳芳. 高强船板A36焊接热影响区组织与韧性研究[J]. 河北冶金, 2015(12): 22-24. Feng Liguo, Jin Fangfang. Research about structure and toughness of heat affected zone in welding for high-strength ship plate A36[J]. Hebei Metallurgy, 2015(12): 22-24. [6]付 坤, 胡连海, 王华龙, 等. X120管线钢激光电弧复合焊热模拟热影响区的组织转变[J]. 热加工工艺, 2023, 52(11): 63-66, 71. Fu Kun, Hu Lianhai, Wang Hualong, et al. Microstructure transformation of laser-Archybrid welding thermal simulated heat affected zone of X120 pipeline steel[J]. Hot Working Technology, 2023, 52(11): 63-66, 71. [7]谯明亮, 王同良, 康双双. 高强高韧Q420qE桥梁钢SHCCT曲线测试与焊接工艺制定[J]. 天津冶金, 2018(1): 52-55. Qiao Mingliang, Wang Tongliang, Kang Shuangshuang. Measurement of SHCCT curve and welding procedure for high strength and toughness Q420qE bridge steel[J]. Tianjin Metallurgy, 2018(1): 52-55. [8]曹佳丽, 靳红泽, 李康立, 等. 水电用Q690CFD低合金高强钢SH-CCT曲线测定与分析[J]. 金属热处理, 2024, 49(2): 60-65. Cao Jiali, Jin Hongze, Li Kangli, et al. Measurement and analysis of SH-CCT curves of Q690CFD HSLA hydropower steel[J]. Heat Treatment of Metals, 2024, 49(2): 60-65. [9]鄢文泽, 闫文青, 林轩艺, 等. 铌微合金化对低合金高强钢模拟焊接热影响区粒状贝氏体相变及SH-CCT曲线的影响[J]. 金属热处理, 2023, 48(9): 150-156. Yan Wenze, Yan Wenqing, Lin Xuanyi, et al. Effect of Nb micro-alloying on granular bainite transformation and SH-CCT curves in simulated heat-affected zone of high strength low alloy steel[J]. Heat Treatment of Metals, 2023, 48(9): 150-156. [10]曹志龙, 朱 浩, 安同邦, 等. 1400 MPa级超高强钢SH-CCT曲线及其热影响区组织和性能[J]. 焊接学报, 2023, 44(8): 109-115. Cao Zhilong, Zhu Hao, An Tongbang, et al. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1400 MPa ultra high strength steel[J]. Transactions of The China Welding Institution, 2023, 44(8): 109-115. [11]张永林, 安同邦, 郑 庆, 等. 屈服强度1400 MPa级低合金超高强钢的SH-CCT曲线及其粗晶热影响区组织[J]. 焊接, 2023(2): 24-28, 37. Zhang Yonglin, An Tongbang, Zheng Qing, et al. The SH-CCT diagram and CGHAZ microstructure of 1400 MPa grade HSLA steel[J]. Welding and Joining, 2023(2): 24-28, 37. [12]于晨阳, 池 强, 张伟卫, 等. OD1422 mm的X80级管线钢SH-CCT曲线测定与分析[J]. 金属热处理, 2020, 45(6): 93-97. Yu Chenyang, Chi Qiang, Zhang Weiwei, et al. Determination and analysis of SH-CCT curve of X80 pipeline steel with OD1422 mm[J]. Heat Treatment of Metals, 2020, 45(6): 93-97. [13]陈英俊, 刘志芳. 海洋工程用钢E690的SH-CCT测定及组织转变研究[J]. 江西冶金, 2015, 35(5): 1-4. Chen Yingjun, Liu Zhifang. SH-CCT determination and organization transformation research for ocean engineering steel E690[J]. Jiangxi Metallurgy, 2015, 35(5): 1-4. |