[1]唐春霞, 曹文全. 耐磨钢的国内生产现状及发展前景[J]. 宽厚板, 2018, 24(3): 37-41. Tang Chunxia, Cao Wenquan. Current production situation and development prospect of wear resistant steel at home[J]. Wide and Heavy Plate, 2018, 24(3): 37-41. [2]王金参, 赵剑波, 孙 平. 耐磨材料的研究现状[J]. 金属加工(热加工), 2010(7): 68-69. [3]杨晓江, 白 敏, 张大勇, 等. 耐磨钢的研究现状[J]. 热加工工艺, 2021, 50(21): 7-10. Yang Xiaojiang, Bai Min, Zhang Dayong, et al. Research status of wear-resistant steel[J]. Hot Working Technology, 2021, 50(21): 7-10. [4]季德静, 杨维宇, 白雅琼. 高强韧工程机械用钢Q690D的淬火工艺优化[J]. 金属热处理, 2022, 47(9): 108-113. Ji Dejing, Yang Weiyu, Bai Yaqiong. Optimization of quenching process of high strength and toughness Q690D steel for construction machines[J]. Heat Treatment of Metals, 2022, 47(9): 108-113. [5]王 昕, 梁小凯, 童 帅, 等. 回火温度对含V马氏体钢组织和性能的影响[J]. 钢铁研究学报, 2023, 35(4): 471-481. Wang Xin, Liang Xiaokai, Tong Shuai, et al. Effect of tempering temperature on microstructure and mechanical properties of V-bearing martensite steel[J]. Journal of Iron and Steel Research, 2023, 35(4): 471-481. [6]Zhou X S, Zhao W M, Dong L S, et al. Effect of quenching and tempering temperatures on microstructure and properties of ultrahigh strength cast steel[J]. Steel Research International, 2022, 93(11): 2200328. [7]刘城城, 任 英, 张立峰. 淬火温度对不同铬含量的低碳马氏体不锈钢组织和性能的影响[J]. 钢铁研究学报, 2022, 34(11): 1256-1266. Liu Chengcheng, Ren Ying, Zhang Lifeng. Effect of quenching temperature on microstructure and property of low-carbon martensitic stainless steels with different Cr content[J]. Journal of Iron and Steel Research, 2022, 34(11): 1256-1266. [8]Ren J Y, Li C S, Han Y H, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel[J]. Materials Science and Engineering A, 2021, 812: 141080. [9]Zhang Y J, Yang J H, Xiao D H, et al. Effect of quenching and tempering on mechanical properties and impact fracture behavior of low-carbon low-alloy steel[J]. Metals, 2022, 12(7): 1087. [10]邓 杰, 宋新莉, 郑爱琴, 等. 回火温度对Cu-Cr-Ti马氏体耐磨钢组织及强韧性的影响[J]. 钢铁研究学报, 2019, 31(12): 1031-1038. Deng Jie, Song Xinli, Zheng Aiqin, et al. Effect of tempering temperature on microstructure and mechanical properties of Cu-Cr-Ti martensite wear-resistant steel[J]. Journal of Iron and Steel Research, 2019, 31(12): 1031-1038. [11]Zeng T Y, Li W, Wang, N M, et al. Microstructural evolution during tempering and intrinsic strengthening mechanisms in a low carbon martensitic stainless bearing steel[J]. Materials Science and Engineering A, 2022, 836: 142736. [12]程 石, 胡 锋, 王亚超, 等. 回火热处理对低碳高强度钢低温冲击韧性的影响[J]. 材料热处理学报, 2020, 41(12): 80-89. Cheng Shi, Hu Feng, Wang Yachao, et al. Effect of tempering heat treatment on low-temperature impact toughness of low-carbon high-strength steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 80-89. [13]李成儒, 邓想涛, 梁 亮, 等. 新型耐高温磨损钢板组织性能与高温磨损行为研究[J]. 钢铁研究学报, 2021, 33(8): 862-870. Li Chengru, Deng Xiangtao, Liang Liang, et al. Study on microstructure, properties and high temperature wear behavior of a novel high temperature wear-resistant steel[J]. Journal of Iron and Steel Research, 2021, 33(8): 862-870. [14]秦世斌, 杨聪俐, 赵大力, 等. 淬火和回火温度对GX160CrMoV12钢显微组织和力学性能的影响[J]. 郑州大学学报(工学版), 2021, 42(3): 70-75. Qin Shibin, Yang Congli, Zhao Dali, et al. Effects of quenching and tempering temperature on microstructure and mechanical properties of GX160CrMoV12 steel[J]. Journal of Zhengzhou University(Engineering Science), 2021, 42(3): 70-75. [15]Franceschi M, Bertolini R, Fabrizi A, et al. Effect of ausforming temperature on bainite morphology in a 3.2%Si carbide-free bainitic steel[J]. Materials Science and Engineering A, 2023, 864: 144553. [16]杜思敏, 陈文雄, 王洪利, 等. 奥氏体化温度对1.2367热作模具钢显微组织及性能的影响[J]. 金属热处理, 2023, 48(11): 90-96. Du Simin, Chen Wenxiong, Wang Hongli, et al. Effect of austenitizing temperature on microstructure and properties of 1.2367 hot working die steel[J]. Heat Treatment of Metals, 2023, 48(11): 90-96. [17]李 飞, 张 程, 张国赏, 等. 回火温度对3Cr3Mo3VNb钢力学性能和断口形貌的影响[J]. 热加工工艺, 2024, 53(2): 41-46. Li Fei, Zhang Cheng, Zhang Guoshang, et al. Effects of tempering temperature on mechanical properties and fracture morphology of 3Cr3Mo3VNb steel[J]. Hot Working Technology, 2024, 53(2): 41-46. [18]Morsdorf L, Kashiwar A, Kuebel C, et al. Carbon segregation and cementite precipitation at grain boundaries in quenched and tempered lath martensite[J]. Materials Science and Engineering A, 2023, 862: 144369. [19]Li J R, Zhang C L, Liu Y Z. Influence of carbides on the high-temperature tempered martensite embrittlement of martensitic heat-resistant steels[J]. Materials Science and Engineering A, 2016, 670: 256-263. [20]Wang F, Qian D S, Mao H J, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite and martensite duplex structure[J]. Journal of Materials Science and Technology, 2020, 9(3): 6712-6722. [21]Zhang Y P, Zhan D P, Qi X W, et al. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel[J]. Journal of Materials Science and Technology, 2019, 35(7): 1240-1249. [22]Yan Z J, Liu K, Eckert J, et al. Effect of tempering and deep cryogenic treatment on microstructure and mechanical properties of Cr-Mo-V-Ni steel[J]. Materials Science and Engineering A, 2020, 787: 139520. [23]张晓东, 夏佃秀, 王守仁, 等. 奥氏体化温度对51CrV4钢淬火组织和性能的影响[J]. 钢铁, 2019, 54(3): 76-81, 95. Zhang Xiaodong, Xia Dianxiu, Wang Shouren, et al. Effect of austenitizing temperature on quenching microstructure and properties of 51CrV4 steel[J]. Iron and Steel, 2019, 54(3): 76-81, 95. |