[1]孙 杰, 房洪杰, 刘 慧, 等. 7085铝合金的热处理工艺[J]. 金属热处理, 2019, 44(2): 187-191. Sun Jie, Fang Hongjie, Liu Hui, et al. Heat treatment process of 7085 aluminum alloy[J]. Heat Treatment of Metals, 2019, 44(2): 187-191. [2]邓肖峰, 王 凯, 石 伟. ZL205A铝合金淬火过程本构模型及数值模拟[J]. 材料热处理学报, 2021, 42(8): 125-136. Deng Xiaofeng, Wang Kai, Shi Wei. Constitutive model and numerical simulation of ZL205A aluminum alloy during quenching[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 125-136. [3]陈云华, 卢百平, 李仕豪, 等. 热处理对SLM成形ZL205A铝合金组织及性能的影响[J]. 特种铸造及有色合金, 2021, 41(7): 905-909. Chen Yunhua, Lu Baiping, Li Shihao, et al. Effects of heat treatment on microstructure and properties of ZL205A alloy fabricated by selective laser melting[J]. Special Casting and Nonferrous Alloys, 2021, 41(7): 905-909. [4]杨启欣, 曹 岩, 黄 亮, 等. 金属型铸造ZL205A铝合金组织物相分析及工艺优化[J]. 特种铸造及有色合金, 2023, 43(4): 510-513. Yang Qixin, Cao Yan, Huang Liang, et al. Microstructure analysis and process optimization of metal mold casting ZL205A alloy[J]. Special Casting and Nonferrous Alloys, 2023, 43(4): 510-513. [5]Kulkarni A, Srinivasan D, Kumar S, et al. Precipitate evolution and thermal stability of A205 fabricated using laser powder bed fusion[J]. Journal of Materials Science, 2023, 58: 2310-2333. [6]刘文胜, 刘东亮, 马运柱, 等. 2×××系铝合金的热处理工艺研究进展[J]. 轻合金加工技术, 2013, 41(6): 12-20. Liu Wensheng, Liu Dongliang, Ma Yunzhu, et al. Development of heat-treatment process for 2××× series aluminum alloy[J]. Light Alloy Fabrication Technology, 2013, 41(6): 12-20. [7]王瑞红, 孙瑞霞. 时效温度对车板用轧制6A01-T4铝合金力学拉伸性能和组织的影响[J]. 兵器材料科学与工程, 2019, 42(3): 82-85. Wang Ruihong, Sun Ruixia. Effect of aging temperature on mechanical properties and microstructure of rolling 6A01-T4 aluminum alloy[J]. Ordnance Material Science and Engineering, 2019, 42(3): 82-85. [8]Gao L, Li K, Ni S, et al. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment[J]. Journal of Materials Science and Technology, 2021, 61: 25-32. [9]Chen Q, Zhao W, Jiang J, et al. Effect of T6 heat treatment on microstructure and mechanical properties of large-weight aluminum alloy flywheel housing parts formed by local-loading squeeze casting[J]. Journal of Materials Research and Technology, 2023, 24: 1612-1625. [10]Li H, Liu S, Jie J, et al. Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9/12): 3033-3042. [11]李 卫, 龙文元. 脉冲磁场-倾斜管复合工艺制备6063铝合金半固态组织[J]. 特种铸造及有色合金, 2023, 43(3): 389-393. Li Wei, Long Wenyuan. Microstructure of 6063 semi-solid aluminum alloy fabricated by pulsed magnetic field-inclined pipe compound process[J]. Special Casting and Nonferrous Alloys, 2023, 43(3): 389-393. [12]师亚洲, 逯广平, 高 翌, 等. 脉冲磁场处理对7075铝合金性能及组织的影响[J]. 金属热处理, 2021, 46(9): 159-164. Shi Yazhou, Lu Guangping, Gao Yi, et al. Effect of pulsed magnetic field treatment on properties and microstructure of 7075 aluminum alloy[J]. Heat Treatment of Metals, 2021, 46(9): 159-164. [13]白庆伟, 麻永林, 邢淑清, 等. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20148. Bai Qingwei, Ma Yonglin, Xing Shuqing, et al. Precipitation and strengthening mechanism of Al-Zn-Mg-Cu alloy under controllable electromagnetic energy(CEME) aging treatment[J]. Materials Reports, 2021, 35(20): 20143-20148. [14]樊龙龙, 胡 光. 固溶处理对ZL205A高强韧铝合金微观组织和拉伸性能的影响[J]. 热加工工艺, 2022, 51(24): 138-141. Fan Longlong, Hu Guang. Effects of solid solution treatment on microstructure and tensile properties of ZL205A high strength aluminum alloy[J]. Hot Working Technology, 2022, 51(24): 138-141. [15]Zhou S, Wu K, Yang G, et al. Microstructure and mechanical properties of wire arc additively manufactured 205A high strength aluminum alloy: The comparison of as-deposited and T6 heat-treated samples[J]. Materials Characterization, 2022, 189: 111990. [16]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010. Hu Gengxiang, Cai Xun, Rong Yonghua. Fundamentals of Materials Science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010. |