[1]Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J]. Materials Science and Engineering R, 2009, 65(4-6): 39-104. [2]王耘涛, 布茂东. 低镍和无镍奥氏体不锈钢的研究现状及进展[J]. 金属热处理, 2013, 38(1): 15-20. Wang Yuntao, Bu Maodong. Present research and progress on low-nickel and nickel-free austenitic stainless steels[J]. Heat Treatment of Metals, 2013, 38(1): 15-20. [3]Rezayat M, Karamimoghadam M, Moradi M, et al. Overview of surface modification strategies for improving the properties of metastable austenitic stainless steels[J]. Metals, 2023, 13: 1268. [4]Liu J, Wang H J, Huang L, et al. Microstructure evolution and mechanical properties of heterogeneous nano/ultrafine-grained austenitic stainless steel prepared by low-temperature rolling and annealing[J]. Steel Research International, 2022, 94: 658. [5]Ahmedabadi P M, Kain V. Kinetics parameters for deformation-induced martensitic transformation in austenitic stainless steels[J]. Philosophical Magazine Letters, 2020, 100: 555-560. [6]Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity(TRIP) in advanced steels: A review[J]. Materials Science and Engineering A, 2020, 795: 140023. [7]Sohrabi M J, Naghizadeh M, Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review[J]. Archives of Civil and Mechanical Engineering, 2020, 20: 124. [8]He B B. On the factors governing austenite stability: Intrinsic versus extrinsic[J]. Materials, 2020, 13(15): 3440. [9]Angel T. Formation of martensite in austenitic stainless steels[J]. Journal of Iron and Steel Institute, 1954, 177: 165-174. [10]陆世英. 不锈钢概论[M]. 北京: 化学工业出版社, 2013. [11]Lang Y P, Qu H P, Chen H T, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J]. Journal of Iron and Steel Research, International, 2015, 22(2): 91-98. [12]Misra R D K, Zhang Z, Venkatasurya P K C, et al. The effect of nitrogen on the formation of phase reversion-induced nanograined/ultrafine-grained structure and mechanical behavior of a Cr-Ni-N steel[J]. Materials Science and Engineering A, 2011, 528: 1889-1896. [13]Li S, Zhang C S, Lu J P, et al. A review of progress on high nitrogen austenitic stainless-steel research[J]. Materials Express, 2021, 11(12): 1901-1925. [14]Kumar C S, Singh G, Poddar S, et al. High-manganese and nitrogen stabilized austenitic stainless steel(Fe-18Cr-22Mn-0.65N): A material with a bright future for orthopedic implant devices[J]. Biomedical Materials, 2021, 16(6): 065011. [15]翁建寅, 董 瀚, 李 北, 等. N含量对高氮CrMnMo奥氏体不锈钢组织和性能的影响[J]. 金属热处理, 2020, 45(1): 160-163. Weng Jianyin, Dong Han, Li Bei, et al. Effect of nitrogen content on microstructure and properties of high nitrogen CrMnMo austenitic stainless steel[J]. Heat Treatment of Metals, 2020, 47(2): 160-163. [16]Lee T H, Oh C S, Kim S J. Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe-18Cr-10Mn-N steels[J]. Scripta Materialia, 2008, 58(2): 110-113. [17]Yang D P, Wang T, Miao Z T, et al. Effect of grain size on the intrinsic mechanical stability of austenite in transformation-induced plasticity steels: The competition between martensite transformation and dislocation slip[J]. Journal of Materials Science and Technology, 2023(31): 38-43. [18]Kisko A, Misra R D K, Talonen J, et al. The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr-9Mn-Ni-Cu stainless steel[J]. Materials Science and Engineering A, 2013, 578(17): 408-416. [19]Naghizadeh M, Mirzadeh H. Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel[J]. Steel Research International, 2019, 90(10): 1900153. [20]于崇浩, 刘 佳, 邓想涛, 等. 异构片层结构304不锈钢的制备及其力学性能[J]. 金属热处理, 2022, 47(2): 86-90. Yu Chonghao, Liu Jia, Deng Xiangtao, et al. Preparation and mechanical properties of 304 stainless steel with heterogeneous lamella structure[J]. Heat Treatment of Metals, 2022, 47(2): 86-90. |