[1] Zhang L W, Li H, Bian T J, et al. Advances and challenges on springback control for creep age forming of aluminum alloy[J]. Chinese Journal of Aeronautics, 2021, 35(10): 8-24. [2] Zhang L W, Li H, Bian T J, et al. Plastic loading induced high strength-ductility for creep aged Al-Cu-Li alloys[J]. Materials Science and Engineering A, 2023, 865: 144615. [3] Wu C H, Li H, Bian T J, et al. Natural aging behaviors of Al-Cu-Li alloy: PLC effect, properties and microstructure evolution[J]. Materials Characterization, 2022, 184: 111694. [4] Zuo D, Cao Z, Cao Y, et al. Effect of pre-stretching on microstructures and mechanical behaviors of creep-aged 7055 al alloy and its constitutive modeling[J]. Metals, 2019, 9(5): 584. [5] Yang Y H, Zhan L H, Shen R L, et al. Effect of pre-deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling[J]. Materials Science and Engineering A, 2017, 683: 227-235. [6] 张力文. 初始状态对铝锂合金蠕变时效行为的影响及其机制[J]. 有色金属工程, 2024, 14(7): 68-72, 100. Zhang Liwen. Influence of initial states on creep aging behavior of 2195 Al-Li alloy and associated mechanism[J]. Nonferrous Metals Engineering, 2024, 14(7): 68-72, 100. [7] Liu C, Yang J, Ma P, et al. Large creep formability and strength-ductility synergy enabled by engineering dislocations in aluminum alloys[J]. International Journal of Plasticity, 2020, 134: 102774. [8] 王康康, 王小威, 温建锋, 等. 蠕变断裂: 从物理失效机制到结构寿命预测[J]. 机械工程学报, 2021, 57(16): 132-152. Wang Kangkang, Wang Xiaowei, Wen Jianfeng, et al. Creep rupture: From physical failure mechanisms to lifetime prediction of structures[J]. Journal of Mechanical Engineering, 2021, 57(16): 132-152. [9] Zhou C, Zhan L H, Shen R L, et al. Creep behavior and mechanical properties of Al-Li-S4 alloy at different aging temperatures[J]. Journal of Central South University, 2020, 27(4): 1168-1175. [10] Cassada W A, Shiflet G J, Starke E A. The effect of plastic-deformation on Al2CuLi (T1) precipitation[J]. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 1991, 22(2): 299-306. [11] 卫英慧, 贾连锁, 胡兰青, 等. Al-Li-Cu-Zr合金中T1相结构、形核和长大机制研究[J]. 稀有金属材料与工程, 2003, 32(6): 428-431. Wei Yinghui, Jia Liansuo, Hu Lanqing, et al. Study on T1 phase structure, nucleation and growth mechanism in Al-Li-Cu-Zr alloy[J]. Rare Metal Materials and Engineering, 2003, 32(6): 428-431. [12] 于 娟, 冯朝辉, 赵唯一, 等. 预拉伸变形量对2050铝锂合金组织和性能的影响[J]. 金属热处理, 2022, 47(6): 64-68. Yu Juan, Feng Chaohui, Zhao Weiyi, et al. Effect of pre-stretching amount on microstructure and properties of 2050 Al-Li alloy[J]. Heat Treatment of Metals, 2022, 47(6): 64-68. [13] 廖 斌, 曹玲飞, 吴晓东. 铝合金无沉淀析出带的研究进展[J]. 金属热处理, 2021, 46(1): 154-160. Liao Bin, CaoLingfei, Wu Xiaodong. Research progress on precipitation-free zone of aluminum alloy [J]. Heat Treatment of Metals, 2021, 46(1): 154-160. [14] Tang L Q, Guo A H, Farid W, et al. Enhanced mechanical and corrosion properties of 2195 Al-Li alloy via cryogenic pre-rolling and aging [J]. Journal of Alloys and Compounds, 2025, 1013: 178664. [15] Ogura T, Hirose A, Sato T. Effect of PFZ and grain boundary precipitate on mechanical properties and fracture morphologies in Al-Zn-Mg(Ag)alloys[J]. Materials Science Forum, 2010, 638-642: 297-302. [16] Zhang L W, Li H, Bian T J, et al. Significant reduction of anisotropy in stress relaxation aging and mechanical properties improvement for 2195 Al-Cu-Li alloy subjected to plastic loading [J]. Chinese Journal of Aeronautics, 2025, 38: 103165. |