金属热处理 ›› 2025, Vol. 50 ›› Issue (2): 268-277.DOI: 10.13251/j.issn.0254-6051.2025.02.044

• 计算机应用 • 上一篇    下一篇

基于机器学习模型的中锰钢临界温度A1和A3的预测

张志业1, 王焱2, 张彪1, 季泽1, 刘亚良1, 张明赫1, 冯运莉1   

  1. 1.华北理工大学 冶金与能源学院, 河北 唐山 063210;
    2.石家庄海关技术中心曹妃甸业务部, 河北 唐山 063205
  • 收稿日期:2024-03-15 修回日期:2024-12-06 发布日期:2025-04-10
  • 通讯作者: 张明赫,副教授,博士,E-mail:mhzhangmse@163.com
  • 作者简介:张志业(2001—),男,学士,主要研究方向为中锰钢的组织与性能,E-mail:15127157690@163.com。
  • 基金资助:
    国家自然科学基金(51901078);河北省自然科学基金(E2022209070);河北省中央引导地方科技发展资金(236Z1003G);唐山市市级科技计划(24130207C)

Prediction of critical temperature A1 and A3 of medium-Mn steel based on machine learning models

Zhang Zhiye1, Wang Yan2, Zhang Biao1, Ji Ze1, Liu Yaliang1, Zhang Minghe1, Feng Yunli1   

  1. 1. College of Metallurgy and Energy, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. Shijiazhuang Customs Technology Center Caofeidian Business Department, Tangshan Hebei 063205, China
  • Received:2024-03-15 Revised:2024-12-06 Published:2025-04-10

摘要: 为便于中锰钢热处理工艺的设计,开发了用于中锰钢临界温度A1、A3预测的机器学习模型。通过Thermal-Calc模拟软件获取496组不同成分中锰钢临界温度数据,以Mn、Al、C成分作为输入特征,以相变温度A1和A3作为输出目标。采用均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)3种指标对模型预测效果进行评价。从7种机器学习模型(LR、DT、SVM、GPR、Boosting、Bagging以及ANN)中筛选出了预测A1的GPR模型和A3的GPR、ANN模型。结果表明,预测A1的GPR模型具有足够精度,为预测A1的最优模型。采用网格搜索法对预测A3的初步模型进行超参数调节,从而获得A3的最优模型(单层ANN模型)。针对所应用文献中中锰钢的化学成分,利用最优模型对A1、A3进行预测,得到A1、A3预测值与实测值的总体MAE分别为9.95 ℃和13.57 ℃,最低差距分别为0.30 ℃和6.20 ℃,表明模型精准度高,可用于中锰钢临界温度的预测。

关键词: 机器学习, 中锰钢, 临界温度, 参数调节

Abstract: In order to facilitate the design of heat treatment process of medium-Mn steel, a machine learning model for predicting the critical temperature A1 and A3 of medium-Mn steel was optimized. The critical temperature data of 496 groups of medium-Mn steels with different compositions were obtained by Thermal-Calc simulation software. Mn, Al and C compositions were taken as input characteristics, and phase transition temperatures A1 and A3 were taken as output targets. Three indexes of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient (R2) were used to evaluate the prediction effect of the model. From seven machine learning models (LR, DT, SVM, GPR, Boosting, Bagging and ANN), the GPR model for predicting A1 and the GPR and ANN model for predicting A3 were screened. The results show that the GPR model for predicting A1 has sufficient accuracy, that is the optimal model for A1. The grid search method is used to adjust the hyperparameters of the preliminary model for predicting A3, and the optimal model of A3 (single-layer ANN model) is obtained. According to the chemical composition of medium-Mn steel in the applied literature, A1 and A3 are predicted by using the optimal model. The overall MAE of the predicted value and measured value of A1 and A3 is 9.95 ℃ and 13.57 ℃, respectively, and the minimum difference is 0.30 ℃ and 6.20 ℃, respectively, indicating that the model has high accuracy and can be used to predict the critical temperature of medium-Mn steel.

Key words: machine learning, medium-Mn steel, critical temperature, parameter adjustment

中图分类号: