[1]船舶行业发展及钢材需求分析[N]. 世界金属导报, 2014-11-04(B15). [2]黄 维, 高真凤, 丁 伟, 等. 我国船板钢现状及技术发展趋势[J]. 上海金属, 2014, 36(4): 43-46. Huang Wei, Gao Zhenfeng, Ding Wei, et al. Evelopment status and technology trend of hull steel plate in China[J]. Shanghai Metals, 2014, 36(4): 43-46. [3]帅 奇. 浅谈我国船舶工业中厚板用钢的生产与营销实践[J]. 冶金信息导刊, 2005(5): 5-8. Shuai Qi. The production and marketing practice of steel plate used inChina ship building industry.[J]. Metallurgical Information Review, 2005(5): 5-8. [4]习小军, 赖朝彬, 吴春红, 等. 大线能量焊接船板钢的研究现状与发展[J]. 有色金属科学与工程, 2016, 7(5): 55-60. Xi Xiaojun, Lai Chaobin, Wu Chunhong, et al. Research situation and development of ship plate steel by high heat input welding.[J]. Nonferrous Metals Science and Engineering, 2016, 7(5): 55-60. [5]陈 妍, 齐殿威, 吴美庆. 国内外高强度船板钢的研发现状和发展[J]. 特殊钢, 2011, 32(5): 26-30. Chen Yan, Qi Dianwei, Wu Meiqing. Present status and progress of high strength ship plate steel at home and abroad[J]. Special Steel, 2011, 32(5): 26-30. [6]彭 晟, 张恒华, 吴锦炎, 等. 热处理工艺对高强度船板钢组织和性能的影响[J]. 热处理, 2008(2): 23-26. Peng Sheng, Zhang Henghua, Wu Jinyan, et al. Effect of heat treatment on the microstructure and mechanical property of high strength marine steel.[J]. Heat Treatment, 2008(2): 23-26. [7]李 龙, 丁 桦, 杨春征, 等. 控轧控冷工艺对低碳铌微合金钢组织和性能的影响[J]. 钢铁研究学报, 2006(7): 46-51. Li Long, Ding Hua, Yang Chunzheng, et al. Effect of controlled rolling and controlled cooling on microstructure and mechanical properties of low carbon steel microalloyed with nb[J]. Journal of Iron and Steel Research, 2006(7): 46-51. [8]王 洪, 刘小林, 蔡庆伍. 生产工艺对420 MPa高强度船板钢低温韧性的影响[J]. 钢铁, 2006(8): 64-67. Wang Hong, Liu Xiaolin, Cai Qingwu. Effect of production processes on low temperature toughness of 420 MPa high strength shipbuilding steel[J]. Iron and Steel, 2006(8): 64-67. [9]蔡庆伍, 余 伟, 董洪波, 等. 控轧控冷工艺对Nb-V钢的组织性能析出行为的影响[J]. 钢铁, 2002(3): 32-36. Cai Qingwu, Yu Wei, Dong Hongbo, et al. Effect of controlled rolling and cooling on microstructures and mechanical properties of Nb-V microalloyed steel[J]. Iron and Steel, 2002(3): 32-36. [10]熊 涛, 徐 光, 袁 清, 等. 低温压力容器用07Ni5DR钢的动态CCT曲线[J]. 金属热处理, 2019, 44(4): 19-21. Xiong Tao, Xu Guang, Yuan Qing, et al. Dynamic CCT curve of 07Ni5DR cryogenic pressure vessel steel[J]. Heat Treatment of Metals, 2019, 44(4): 19-21. [11]刘守显, 靳芳芳, 李钧正. X100管线钢的CCT曲线[J]. 金属热处理, 2014, 39(4): 49-52. Liu Shouxian, Jin Fangfang, Li Junzheng. CCT curve of X100 pipeline steel[J]. Heat Treatment of Metals, 2014, 39(4): 49-52. [12]罗国华, 范植金, 刘文艳. 含铜超低碳钢CCT曲线及组织[J]. 金属热处理, 2012, 37(9): 40-43. Luo Guohua, Fan Zhijin, Liu Wenyan. CCT curves and microstructure of Cu-containing extra-low carbon steel[J]. Heat Treatment of Metals, 2012, 37(9): 40-43 [13]Chandra T, Manohar P A. Continuous cooling transformation behaviour of high strength microalloyed steels for linepipe applications[J]. ISIJ International, 1998, 38(7): 766-774. [14]Zhao Mingchun, Yang Ke, Xiao Furen, et al. Continuous cooling transformation of undeformed and deformed low carbon pipeline steels[J]. Materials Science and Engineering A, 2003, 355(1/2): 126-136. |