[1]张先鸣. 风电机组用高强度螺栓断裂分析[J]. 金属制品, 2013, 39(2): 45-48. Zhang Xianming. Fracture analysis of high strength bolt for wind power unit[J]. Metal Products, 2013, 39(2): 45-48. [2]庄 攀, 彭德榜, 陈 玲, 等. 浅析风电叶片高强度螺栓的选材与热处理工艺[J]. 热加工工艺, 2019, 48(12): 175-177. Zhuang Pan, Peng Debang, Chen Ling, et al. Material selection and heat treatment technology of high strength bolt for wind power blades[J]. Hot Working Technology, 2019, 48(12): 175-177. [3]杨 阳. 风电连接螺栓疲劳性能及其失效分析[D]. 大连: 大连海事大学, 2015 Yang Yang. Fatigue properties and failure analysis of connection bolt in wind power application[D]. Dalian: Dalian Maritime University, 2015. [4]Zafra A, Peral L B, Belzunce J, et al. Effect of hydrogen on the tensile properties of 42CrMo4 steel quenched and tempered at different temperatures[J]. International Journal of Hydrogen Energy, 2018, 43(18): 9068-9082. [5]余兆新, 蒋佩华, 姚志江, 等. 42CrMo钢螺栓断裂分析[J]. 金属热处理, 2012, 37(4): 128-130. Yu Zhaoxin, Jiang Peihua, Yao Zhijaing, et al. Fracture analysis of bolt made of 42CrMo steel[J]. Heat Treatment of Metals, 2012, 37(4): 128-130. [6]郑新菊, 张有书. 低淬透性钢化学成份的选择[J]. 金属热处理, 1978, 3(5): 31-33. [7]赫建成, 金天报, 赵二军. 工程机械用42CrMo钢环件热处理后的组织与性能[J]. 金属热处理, 2018, 43(12): 205-210. He Jiancheng, Jin Tianbao, Zhao Erjun. Microstructure and properties of 42CrMo steel ring for construction machinery after heat treatment[J]. Heat Treatment of Metals, 2018, 43(12): 205-210. [8]彭红兵, 陈伟庆, 陈 列, 等. 硼对含锡20CrMnTi钢连续冷却转变及淬透性的影响[J]. 金属热处理, 2015, 40(9): 98-101. Peng Hongbing, Chen Weiqing, Chen Lie, et al. Effect of boron on continuous cooling transformation and hardenability of 20CrMnTi steel containing tin[J]. Heat Treatment of Metals, 2015, 40(9): 98-101. [9]Kraposhin V S, Talis A L, Kamenskaya N I, et al. Arrangement of collective B-12 atoms in the crystal structure of gamma-Fe and effect of boron on the hardenability of steel[J]. Metal Science and Heat Treatment, 2018, 60(1/2): 63-71. [10]田志强, 刘建磊, 张晨光, 等. 酸溶硼含量对低碳钢组织性能的影响[J]. 河北冶金, 2019(3): 20-22. Tian Zhiqiang, Liu Jianlei, Zhang Chenguang, et al. effect of acid solible boron on microstructure and properties of low carbon steel[J]. Hebei Metallurgy, 2019(3): 20-22. [11]石原悠太郎, 松本康弘, 藤松威史, 等. Alを活用したSCM440の焼入性ならびに焼入焼戻し材の靭性の改善[J]. 山陽特殊製鋼技報, 2013, 20(1): 24-31. Yutaro Ishihara, Yasuhiro Matsumoto, Takeshi Fujimatsu, et al. Improvement of hardenability and toughness of SCM440 with addition of Al[J]. Sanyo Technical Report, 2013, 20(1): 24-31. [12]Wang T S, Zhang M, Wang Y H, et al. Martensitic transformation behaviour of deformed supercooled austenite[J]. Scripta Materialia, 2013, 68(2): 162-165. [13]陈继林, 郭明仪, 刘振民, 等. 氮含量对含硼钢淬透性的影响[J]. 轧钢, 2015, 32(4): 94-96. Chen Jilin, Guo Mingyi, Liu Zhenmin, et al. Effect of nitrogen content on the hardenability of boron steel[J]. Steel Rolling, 2015, 32(4): 94-96. [14]王处义. 截面尺寸对45钢淬透性的影响[J]. 金属热处理, 1986, 11(5): 40-43. Wang Chuyi. The influence of section size on the hardenability of 45 steel[J]. Heat Treatment of Metals, 1986, 11(5): 40-43. [15]张国强, 王毛球, 曹燕光, 等. 钢的淬透性预测模型研究进展[J]. 金属热处理, 2019, 44(4): 224-228. Zhang Guoqiang, Wang Maoqiu, Cao Yanguang, et al. Review on hardenability prediction models of steels[J]. Heat Treatment of Metals, 2019, 44(4): 224-228. [16]吴季恂, 周光裕, 荀毓闽. 钢的淬透性应用技术[M]. 北京: 机械工业出版社, 1994. [17]潘 涛, 王小勇, 苏 航, 等. 合金元素AL对微B处理特厚钢板淬透性及力学性能的影响[J]. 金属学报, 2014, 50(4): 431-435. Pan Tao, Wang Xiaoyong, Su Hang, et al. Effect of alloying element Al on hardenability and mechanical properties of micro-B treated ultra-heavy steels[J]. Acta Metallurgica Sinica, 2014, 50(4): 431-435. |