[1]Kang J H, Park I W, Jae J S, et al. A study on die wear model of warm and hot forgings[J]. Metals and Materials, 1998, 4(3): 477-483. [2]Ebara R. Fatigue crack initiation and propagation behavior of forging die steels[J]. International Journal of Fatigue, 2010, 32(5): 830-840. [3]Almeida V B, Takano E H, Mazzaro I, et al. Evaluation of Ni-Al coatings processed by plasma transferred arc[J]. Surface Engineering, 2013, 27(4): 266-271. [4]Navinšek B, Panjan P, Gorenjak F. Improvement of hot forging manufacturing with PVD and DUPLEX coatings[J]. Surface and Coatings Technology, 2001, 137(2/3): 255-264. [5]Wu P, Zhou C Z, Tang X N. Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings[J]. Surface and Coatings Technology, 2003, 166(1): 84-88. [6]Tosun G. Coating of AISI 1010steel by Ni-WC using plasma transferred arc process[J]. Arabian Journal for Science and Engineering, 2014, 39(4): 3271-3277. [7]Reinaldo P R, D’Oliveira A S C M. NiCrSiB coatings deposited by plasma transferred arc on different steel substrates[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 590-597. [8]Gurumoorthy K, Kamaraj M, Rao K P, et al. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy[J]. Materials Science and Engineering A, 2007, 456(1/2): 11-19. [9]Liyanage T, Fisher G, Gerlich A P. Microstructures and abrasive wear performance of PTAW deposited Ni-WC overlays using different Ni-alloy chemistries[J]. Wear, 2012, 274-275(3): 345-354. [10]He P, Huang S, Huang Z, et al. Carbide reinforced Ni-Cr-B-Si-C composite coating on 4Cr5MoSiV1 steel by comprehensive plasma melt injection method[J]. Surface and Coatings Technology, 2015, 266: 134-145. [11]牛龙飞, 洪 峰, 王华君, 等. 碳化铬对H13钢镍基等离子弧堆焊覆层组织与硬度的影响[J]. 焊接技术, 2018, 47(6): 12-15. Niu Longfei, Hong Feng, Wang Huajun, et al. Effect of chromium carbide on microstructure and hardness of H13 steel nickel based plasma surfacing[J]. Welding Technology, 2018, 47(6): 12-15. [12]Chen Guoqing, Fu Xuesong, Wei Yanhui. Microstructure and wear properties of nickel-based surfacing deposited by plasma transferred arc welding[J]. Surface and Coatings Technology, 2013, 228(6): 276-282. [13]Wang Xinhong, Han Fang, Liu Xuemei, et al. Microstructure and wear properties of the Fe-Ti-V-Mo-C hardfacing alloy[J]. Wear, 2008, 265(5/6): 583-589. [14]Imran M Khalid, Masood S H, Brandt Milan, et al. Thermal fatigue behavior of direct metal deposited H13 tool steel coating on copper alloy substrate[J]. Surface and Coatings Technology, 2012, 206(8/9): 2572-2250. [15]刘 栋, 李晓娟, 刘 哲, 等. 不同制备工艺对镍基合金涂层耐热疲劳性能的影响[J]. 金属热处理, 2019, 44(3): 159-166. Liu Dong, Li Xaiojuan, Liu Zhe, et al. Influence of different preparing processes on thermal fatigue resistance of Ni-based alloy coatings[J]. Heat Treatment of Metals, 2019, 44(3): 159-166. [16]李爱农, 游志涛, 王华君, 等. GH2135合金粉末等离子弧覆层组织及其热疲劳性能[J]. 焊接技术, 2018, 47(4): 49-53. Li Ainong, You Zhitao, Wang Huajun, et al. Microstructure and thermal fatigue properties of plasma cladding layer using GH2135 alloy powder[J]. Welding Technology, 2018, 47(4): 49-53. |