[1]LeeB S, Kim M C, Yoon J H, et al. Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application[J]. International Journal of Pressure Vessels and Piping, 2010, 87(1): 74-80. [2]Kim M C, Park S G, Lee K H, et al. Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials[J]. International Journal of Pressure Vessels and Piping, 2015, 131: 60-66. [3]Lee S, Kim S, Hwang B, et al. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[J]. Acta Materialia, 2002, 50(19): 4755-4762. [4]Wu X Q, Kim I S. Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl3 pressure vessel steel[J]. Materials Science and Engineering A, 2003, 348(1/2): 309-318. [5]凌 进, 韩兆隆, 李爱平, 等. 反应堆压力容器模拟锻件用SA508-3CL钢性能研究[J]. 金属热处理, 2006, 31(9): 14-16. Ling Jin, Han Zhaolong, Li Aiping, et al. Properties of SA508-3CL steel forgings for the reactor pressure vessel[J]. Heat Treatment of Metals, 2006, 31(9): 14-16. [6]Fang C, Wang X, He X, et al. Effects of quenching cooling rate and tempering parameters on strength and toughness of SA508-3 steel for nuclear pressure vessels[J]. Heat Treatment of Metals, 2015, 40(12): 117-122. [7]Sun M Y, Hao L H, Li S J, et al. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels[J]. Journal of Nuclear Materials, 2011, 418(1/3): 269-280. [8]Dong D, Chen F, Cui Z. A physically-based constitutive model for SA508-Ⅲ steel: Modeling and experimental verification[J]. Materials Science and Engineering A, 2015, 634: 103-115. [9]Sakai T, Jonas J J. Dynamic recrystallization: Mechanical and microstructural considerations[J]. Acta Metallurgica, 1984, 32(2): 189-209. [10]Ryan N D, McQueen H J. Dynamic softening mechanisms in 304 austenitic stainless steel[J]. Canadian Metallurgical Quarterly, 1990, 29(2): 147-162. [11]McQueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322(1/2): 43-63. [12]Kim S I, Yoo Y C. Dynamic recrystallization behavior of AISI 304 stainless steel[J]. Materials Science and Engineering A, 2001, 311(1/2): 108-113. [13]Stewart G R, Jonas J J, Montheillet F. Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel[J]. ISIJ International, 2004, 44(9): 1581-1589. [14]何西扣, 刘正东, 杨志强, 等. 核压力容器用SA508-4N钢的奥氏体晶粒长大行为[J]. 金属热处理, 2016, 41(6): 4-7. He Xikou, Liu Zhengdong, Yang Zhiqiang, et al. Austenite grain growth behavior of SA508-4N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2016, 41(6): 4-7. [15]Rollett A D, Luton M J, Srolovitz D J. Microstructural simulation of dynamic recrystallization[J]. Acta Metallurgica et Materialia, 1992, 40(1): 43-55. [16]Peczak P. A Monte Carlo study of influence of deformation temperature on dynamic recrystallization[J]. Acta Metallurgica et Materialia, 1995, 43(3): 1279-1291. [17]Kugler G, Turk R. Modeling the dynamic recrystallization under multi-stage hot deformation[J]. Acta Materialia, 2004, 52(15): 4659-4668. [18]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49(16): 3163-3175. [19]Yazdipour N, Davies C H J, Hodgson P D. Microstructural modeling of dynamic recrystallization using irregular cellular automata[J]. Computational Materials Science, 2008, 44(2): 0-576. [20]Takaki T, Hisakuni Y, Hirouchi T, et al. Multi-phase-field simulations for dynamic recrystallization[J]. Computational Materials Science, 2009, 45(4): 881-888. [21]Takaki T, Hisakuni Y, Hirouchi T, et al. Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization[J]. Materials Transactions, 2008, 49(11): 2559-2565 [22]Takaki T, Yoshimoto C, Yamanaka A, et al. Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior[J]. International Journal of Plastic, 2014, 52: 105-116. [23]Miodownik M A. A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminum alloys[J]. Journal of Light Metals, 2002, 2(3): 125-135. [24]Steinbach I, Pezzolla F. A generalized field method for multiphase transformations using interface fields[J]. Physica D, 1999, 134(2): 385-393. [25]Mecking H, Kocks U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica, 1981, 29(11): 1865-75. [26]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A, 1991, 22(7): 1545-1558. [27]Bailey J E, Hirsch P B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver[J]. Philosophical Magazine, 1960, 5(53): 485-497. [28]Kim S G, Kim D I, Kim W T, et al. Computer simulation of two-dimensional and three-dimensional ideal grain growth[J]. Physical Review. E, 2006, 74(6): 061605. [29]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127-136. [30]Taylor A S, Hodgson P D. Dynamic behaviour of 304 stainless steel during high Z deformation[J]. Materials Science and Engineering A, 2011, 528(9): 3310-3320. [31]Cheong Y M, Jung H, Joo Y, et al. Dynamic elastic constants of weld HAZ of SA508 CL.3 steel using resonant ultrasound spectroscopy[C]//Proceedings of 15th WCNDT. Roma, 2000: 559-564. |