[1]Chen Q Z, Thouas G A. Metallic implant biomaterials[J]. Materials Science and Engineering R, 2015, 87: 1-57. [2]Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Progress in Materials Science, 2009, 54: 397-425. [3]朱康平, 祝建雯, 曲恒磊. 国外生物医用钛合金的发展现状[J]. 稀有金属材料与工程, 2012, 41(11): 2058-2063. Zhu Kangping, Zhu Jianwen, Qu Henglei. Development and application of biomedical Ti alloys abroad[J]. Rare Metal Materials and Engineering, 2012, 41(11): 2058-2063. [4]Ffler R, Fleischer M, Kern D P. An anisotropic dry etch process with fluorine chemistry to create well-defined titanium surfaces for biomedical studies[J]. Microelectronic Engineering, 2012, 97: 361-364. [5]Murugan R, Ramakrashna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite[J]. Biomaterials, 2004, 25(17): 3829-3835. [6]张久兴, 刘科高, 周美玲. 放电等离子烧结技术的发展和应用[J]. 粉末冶金技术, 2002, 20(3): 129-134. Zhang Jiuxing, Liu Kegao, Zhou Meiling. Development and application of spark plasma sintering[J]. Powder Metallurgy Technology, 2002, 20(3): 129-134. [7]王 海, 魏芬绒, 邓家彬, 等. 影响钛合金屈强比的因素及作用机理探讨[J]. 热加工工艺, 2016, 45(22): 109-115. Wang Hai, Wei Fenrong, Deng Jiabin, et al. Effect factors for yield ratio of titanium alloy and discussion of function mechanism[J]. Hot Working Technology, 2016, 45(22): 109-115. [8]张 翥, 王群骄, 莫 畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009. Zhang Zhu, Wang Qunjiao, Mo Wei. Metallurgy and Heat-treatment of Titanium[M]. Beijing: Metallurgical Industry Press, 2009. [9]熊汉城, 黄海广, 李志敏, 等. 退火温度对大口径TC4合金无缝管组织与性能的影响[J]. 金属热处理, 2019, 44(12): 107-111. Xiong Hancheng, Huang Haiguang, Li Zhimin, et al. The effect of annealing temperature on the microstructure and properties of large-diameter TC4 alloy seamless pipes[J]. Heat Treatment of Metals, 2019, 44(12): 107-111. [10]刘万理, 张玉勤, 蒋业华, 等. 固溶温度对SPS烧结Ti-24Nb-4Zr-8Sn合金组织和力学性能的影响[J]. 金属热处理, 2017, 42(4): 99-103. Liu Wanli, Zhang Yuqin, Jiang Yehua, et al. Effect of solution temperature on microstructure and mechanical properties of Ti-24Nb-4Zr-8Sn alloy prepared by spark plasma sintering[J]. Heat Treatment of Metals, 2017, 42(4): 99-103. [11]Wang B, Liu Z Q, Gao Y, et al. Microstructure evolution during aging of Ti-10V-2Fe-3Al titanium alloy[J]. Journal of University of Science and Technology Beijing, 2007, 14(4): 335-340. [12]孙悦颖, 景 然, 叶 茜, 等. 固溶时效处理对TC6合金组织与性能的影响[J]. 金属热处理, 2020, 45(7): 45-50. Sun Yueying, Jing Ran, Ye Qian, et al. The effect of solution aging treatment on the structure and properties of TC6 alloy[J]. Heat Treatment of Metals, 2020, 45(7): 45-50. [13]郝玉琳, 杨 锐, 李述军, 等. 时效处理对Ti-29Nb-13Ta-4.6Zr医用钛合金Young's模量和力学性能的影响[J]. 金属学报, 2002, 38(S1): 126-129. Hao Yulin, Yang Rui, Li Shujun, et al. Ageing response of Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J]. Acta Metallurgica Sinica, 2002, 38(S1): 126-129. [14]郝玉琳, 杨 锐, 李述军, 等. α″马氏体相对Ti-29Nb-13Ta-4.6Zr医用钛合金杨氏模量和力学性能的影响[J]. 金属学报, 2004, 38(S1): 236-239. Hao Yulin, Yang Rui, Li Shujun, et al. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″ martensite[J]. Acta Metallurgica Sinica, 2004, 38(S1): 236-239. |