[1] 武威, 李洋, 吉玲康, 等. 管线钢疲劳行为研究进展[J]. 焊管, 2009, 32(8): 31-24. Wu Wei, Li Yang, Ji Lingkang, et al.Progress in research on fatigue behavior of pipeline steel[J]. Welded Pipe and Tube, 2009, 32(8): 31-24. [2] Zhao Z P, Qiao G Y, Li G P.Fatigue properties of ferrite/bainite dual-phase X80 pipeline steel welded joints[J]. Science and Technology of Welding and Joining, 2017, 22(3): 217-226. [3] Boumerzoug Z, Raouache E, Delaunois F.Thermal cycle simulation of welding process in low carbon steel[J]. Materials Science and Engineering A, 2011, 530: 191-195. [4] 贾璐, 刘意春, 贾书君, 等. 热输入对抗大变形管线钢焊接热影响区组织与性能的影响[J]. 金属热处理, 2018, 43(1): 126-131. Jia Lu, Liu Yichun, Jia Shujun, et al.Effect of heat input on microstructure and properties of welding heat affected zone of high-deformability pipeline steel[J]. Heat Treatment of Metals, 2018, 43(1): 126-131. [5] 原卓浩, 王福明, 韦士来, 等. 含Cr低合金结构钢焊接粗晶热影响区的组织与冲击性能[J]. 金属热处理, 2014, 39(6): 1-4. Yuan Zhuohao, Wang Fuming, Wei Shilai, et al.Microstructure and impact properties of CGHAZ in low-alloy structural steel containing Cr[J]. Heat Treatment of Metals, 2014, 39(6): 1-4. [6] 张丽红, 陈芙蓉, 常建刚. 焊接热循环对09MnNiDR钢热影响区低温韧性的影响[J]. 焊接学报, 2020, 41(3): 91-96. Zhang Lihong, Chen Furong, Chang Jiangang.Effect of weld thermal cycle on low temperature toughness of 09MnNiDR steel heat affected zone[J]. Transactions of the China Welding Institution, 2020, 41(3): 91-96. [7] Eliyan F F, Alfantazi A.Corrosion of the heat-affected zones (HAZs) of API-X100 pipeline steel in dilute bicarbonate solutions at 90 ℃ -An electrochemical evaluation[J]. Corrosion Science, 2013, 74(74): 297-307. [8] Zhao Z P, Qiao G Y, Tang L.Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure[J]. Materials Science and Engineering A, 2016, 657: 96-103. [9] 牛延龙, 刘岩松, 刘清友, 等. 针状铁素体管线钢的低温韧性与“有效晶粒尺寸”的新定义[J]. 金属热处理, 2020, 45(7): 101-110. Niu Yanlong, Liu Yansong, Liu Qingyou, et al.Low temperature toughness of acicular ferrite pipeline steel and redefinition of “effective grain size”[J]. Heat Treatment of Metals, 2020, 45(7): 101-110. [10] 张福禄, 王润智, 董策, 等. 内部萌生疲劳裂纹扩展速率定量表征[J]. 金属热处理, 2019, 44(S1): 611-614. Zhang Fulu, Wang Runzhi, Dong Ce, et al.Quantitative characterization of internal initiation fatigue crack growth rate[J]. Heat Treatment of Metals, 2019, 44(S1): 611-614. [11] Zhao Z P, Xu P F, Cheng H X.Characterization of microstructures and fatigue properties for dual-phase pipeline steels by Gleeble simulation of heat-affected zone[J]. Materials, 2019(12): 1-13. |