[1]Joseph C, Benedy K. Light metals in automotive applications[J]. Light Metal Age, 2000, 58(10): 34-35. [2]Fischer D F, Reisner G, Werner E, et al. A new view on transformation induced plasticity(TRIP)[J]. International Journal of Plasticity, 2000, 16(7): 723-748. [3]Cherkaoui M, Berveiller M, Lemoine X. Couplings between plasticity and martensitic phase transformation: overall behavior of polycrystalline TRIP steels[J]. International Journal of Plasticity, 2000, 16(10): 1215-1241. [4]Jacques J P. Transformation-induced plasticity for high strength formable steels[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 259-265. [5]Arlazarov A, Gonué M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing[J]. Materials Science and Engineering: A, 2012, 542: 31-39. [6]Cao Q W, Wang C, Wang W C, et al. Microstructures and mechanical properties of the third generation automobile steels fabricated by ART-annealing[J]. Science China Technological Sciences, 2012, 55(7): 1-9. [7]Li Z C, Ding H, Cai Z H. Mechanical properties and austenite stability in hot-rolled 0.2C-1.6/3.2Al-6Mn-Fe TRIP steel[J]. Materials Science and Engineering: A, 2015, 639(16): 559-566. [8]Cai M H, Li Z, Chao Q. A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility[J]. Metallurgical and Materials Transactions A, 2014, 45(12): 5624-5634. [9]Han J, Lee J S, Jung G J, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Materialia, 2014, 78: 369-377. [10]Li C Z, Ding H, Misra R D K, et al. Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands[J]. Materials Science and Engineering: A, 2017, 679: 230-239. [11]Hu B, Luo H W. A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity[J]. Journal of Alloys and Compounds, 2017, 725: 684-693. [12]Ding R, Dai Z B, Huang M X, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel[J]. Acta Materialia, 2018, 147: 59-69. [13]Lee H, Jo M S, Sohn S S, et al. Novel medium-Mn (austenite + martensite) duplex hot-rolled steel achieving 1.6 GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism[J]. Acta Materialia, 2018, 147: 247-260. [14]Moor E D, Lacroix S, Samek L, et al. Dilatometric study of the quench and partitioning process[C]//The 3rd International Conference on Advanced Structural Steels Korea, 2006: 22-24. [15]Kucerová L, Jirková H, Hauserov D, et al. Analysis of 42SiCr steel after quenching and partitioning by laser scanning confocal microscopy[J]. Metal, 2010, 5: 18-20. [16]陈连生, 张健杨, 田亚强, 等. Mn配分行为对低碳高强Q&P钢组织性能的影响[J]. 金属热处理, 2015, 40(9): 130-134. Chen Liansheng, Zhang Jianyang, Tian Yaqiang, et al. Effects of Mn partitioning on microstructure and mechanical properties of low-carbon Q&P steel[J]. Heat Treatment of Metals, 2015, 40(9): 130-134. [17]Wang C Y, Shi J, Cao W Q, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel[J]. Materials Science and Engineering: A, 2010, 527(15): 3442-3449. [18]YB/T 5338—2006, 残余奥氏体定量测定X射线衍射仪法[S]. [19]GB/T 228.1—2010, 金属材料 拉伸试验 第1部分: 室温试验方法[S]. [20]Gerdemann F L H, Speer J G, Matlock D K. Microstructure and hardness of steel grade 9260 heat-treated by the quenching and partitioning(Q&P) process[J]. Materials Science and Technology, 2004, 1: 439-449. [21]薛瑞峰, 冯运莉, 刘天宇. 温轧温度对中碳马氏体钢组织演变和力学性能的影响[J]. 热加工工艺, 2018, 47(9): 1-5. Xue Ruifeng, Feng Yunli, Liu Tianyu. Effects of warm rolling temperature on microstructure evolution and mechanical properties of medium carbon martensite steel[J]. Hot Working Technology, 2018, 47(9): 1-5. [22]Kumar A, Singh S B, Ray K K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels[J]. Materials Science and Engineering: A, 2008, 474(1): 270-282. [23]王彦华, 黄兴民, 张 雷, 等. 基于修正C-J法和RVE模型的780 MPa级冷轧双相钢的应变硬化行为[J]. 材料研究学报, 2017, 31(11): 801-808. Wang Yanhua, Huang Xingmin, Zhang Lei, et al. Characterization and simulation of strain-hardening behavior of a cold-rolled dual phase steel of 780 MPa grade by means of modified C-J method and RVE model[J]. Chinese Journal of Materials Research, 2017, 31(11): 801-808. [24]Luo H W, Dong H, Huang M X. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels[J]. Materials and Design, 2015, 83: 42-48. [25]Wang X G, Wang L, Huang M X. In-situ evaluation of Lüders band associated with martensitic transformation in a medium Mn transformation-induced plasticity steel[J]. Materials Science and Engineering: A, 2016, 674: 59-63. [26]赵乃勤. 合金固态相变[M]. 长沙: 中南大学出版社, 2008. [27]Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect[J]. Materials Science and Engineering: A, 2016, 673: 63-72. [28]Zhang S, McCormick P, Estrin Y. The morphology of Portevin-Le Chatelier bands: Finite element simulation for Al-Mg-Si[J]. Acta Materialia, 2001, 49(6): 1087-1094. [29]Wang X G, Wang L, Huang M X. Kinematic and thermal characteristics of Lüders and Portevin-Le Chatelier bands in a medium Mn transformation-induced plasticity steel[J]. Acta Materialia, 2017, 124: 17-29. [30]Samek L, Moor E D, Penning J, et al. Static strain aging of microstructural constituents in transformation-induced-plasticity steel[J]. Metallurgical and Materials Transactions A, 2008, 39(11): 2542-2554. [31]He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355): 1029. [32]Moor E D, Lacroix S, Clarke A J, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J]. Metallurgical and Materials Transactions A, 2008, 39(11): 2586-2595. [33]Cai Z H, Ding H, Misra R D K, et al. Unique serrated flow dependence of critical stress in a hot-rolled Fe-Mn-Al-C steel[J]. Scripta Materialia, 2014, 71: 5-8. [34]Fu L, Li Z, Wang H, et al. Lüders-like deformation induced by delta-ferrite-assisted martensitic transformation in a dual-phase high-manganese steel[J]. Scripta Materialia, 2012, 67(3): 297-300. [35]Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013, 68(5): 321-324. [36]Mahieu J, Cooman B C D, Maki J. Phase transformation and mechanical properties of Si-free C-Mn-Al transformation-induced plasticity-aided steel[J]. Metallurgical and Materials Transactions A, 2002, 33(8): 2573-2580. [37]Wang J J, Zwaag S V D. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1527-1539. |