[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362. [3]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2013, 61(8): 1-93. [4]Shun T T, Du Y C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2009, 479(1): 157-160. [5]He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62(1): 105-113. [6]Chen S Y, Wu C Y, Tsai I J, et al. Treatment course of steroid-dependent nephrotic syndrome: emphasized on treatment effect[J]. Nephrology, 2010, 15(3): 336-339. [7]Ma S G, Zhang S F, Gao M C, et al. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification[J]. JOM, 2013, 65(12): 1751-1758. [8]Yasuda H Y, Shigeno K, Nagase T. Dynamic strain aging of Al0.3CoCrFeNi high entropy alloy single crystals[J]. Scripta Materialia, 2015, 108: 80-83. [9]Kiriakos K N, Seitz S M. A theory of shape by space carvin[J]. International Journal of Computer Vision, 2000, 38(3): 199-218. [10]Langdon T G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement[J]. Acta Materialia, 2013, 61(19): 7035-7059. [11]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing[J]. Acta Materialia, 2004, 52(15): 4589-4599. [12]黄艺娜, 唐群华, 戴品强. 轧制变形对Al0.3CoCrFeNi高熵合金显微组织和性能的影响[J]. 机械工程材料, 2015, 39(8): 51-54. Huang Yina, Tang Qunhua, Dai Pinqiang. Effect of rolling deformation on microstructure and properties of Al0.3CoCrFeNi high-entropy alloy[J]. Materials for Mechanical Engineering, 2015, 39(8): 51-54. [13]张 越, 刘 亮, 商 剑. 退火温度对CoCrFeNiAl高熵合金组织与性能的影响[J]. 金属热处理, 2017, 42(9): 36-39. Zhang Yue, Liu Liang, Shang Jian. Effect of annealing temperature on microstructure and properties of CoCrFeNiAl high entropy alloy[J]. Heat Treatment of Metals, 2017, 42(9): 36-39. [14]蒋淑英, 林志峰, 许红明. AlCoCrFeNi 高熵合金铸态及退火态的组织和性能研究[J]. 稀有金属, 2018, 42(12): 1241-1246. Jiang Shuying, Lin Zhifeng, Xu Hongming. Microstructure and properties of as-cast and annealed AlCoCrFeNi high-entropy alloys[J]. Chinese Journal of Rare Metals, 2018, 42 (12): 1241-1246. [15]罗晓艳, 刘贵仲, 高 原. 多主元AlFeCoNiCrTiV0.5高熵合金退火态的硬度及电化学性能[J]. 机械工程材料, 2011, 35(4): 87-90. Luo Xiaoyan, Liu Guizhong, Gao Yuan. Hardness and electrochemical properties of as annealed multi-component AlFeCoNiCrTiV0.5 high-entropy alloy[J]. Materials for Mechanical Engineering, 2011, 35(4): 87-90. [16]李春林, 李 宁, 颜家振. 热处理冷却方式对Fe-16Cr-2.5Mo合金阻尼性能的影响[J]. 功能材料, 2014(7): 7112-7115. Li Chunlin, Li Ning, Yan Jiazhen. Effect of heat treatment cooling method on damping property of Fe-16Cr-2.5Mo alloy[J]. Journal of Functional Materials, 2014(7): 7112-7115. [17]Wang W R, Wang W L, Wang S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys[J]. Intermetallics, 2012, 26: 44-51. [18]顾佳卿, 黄俊霞, 叶晓宁. 不同冷轧压下量对亚稳态奥氏体不锈钢00Cr17Ni7织构的影响[J]. 钢铁研究学报, 2012, 24(8): 53-57. Gu Jiaqin, Huang Junxia, Ye Xiaoning. Effect of different cold rolling reduction on texture of metastable austenitic stainless steel 00Cr17Ni7[J]. Journal of Iron and Steel Research, 2012, 24(8): 53-57. [19]Bhattacharjee P P, Sathiaraj G D, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy[J]. Journal of Alloys and Compounds, 2014, 587(7): 544-552. [20]范太云, 唐群华, 陈文哲, 等. 塑性变形对Al0.5FeCoCrNi高熵合金组织结构和性能的影响[J]. 材料科学与工程学报, 2013, 31(2): 258-263. Fan Taiyun, Tang Qunhua, Chen Wenzhe, et al. Effect of plastic deformation on microstructure and properties of Al0.5FeCoCrNi high entropy alloy[J]. Journal of Materials Science and Engineering, 2013, 31(2): 258-263. [21]姜传海, 杨传铮. X射线衍射技术及其应用[M]. 上海: 华东理工大学出版社, 2010: 108. [22]刘 源, 陈 敏, 李言祥, 等. AlxCoCrCuFeNi多主元高熵合金的微观结构和力学性能[J]. 稀有金属材料与工程, 2009, 38(9): 1602-1607. Liu Yuan, Chen Min, Li Yanxiang, et al. Microstructure and mechanical properties of AlxCoCrCuFeNi multi-principal high entropy alloys[J]. Rare Metal Materials and Engineering, 2009, 38(9): 1602-1607. [23]李小林, 李红斌, 林 哲, 等. 退火工艺对冷轧低碳钢组织和性能的影响[J]. 金属热处理, 2016, 41(6): 106-111. Li Xiaolin, Li Hongbin, Lin Zhe, et al. Effect of annealing process on microstructure and properties of cold rolled low carbon steel[J]. Heat Treatment of Metals, 2016, 41(6): 106-111. [24]周 晖, 霍文燚, 方 峰, 等. 纳米孪晶强化CoCrFeNi高熵合金线材微结构及在若干典型环境下的腐蚀行为[J]. 稀有金属, 2018, 42(12): 1233-1240. Zhou Hui, Huo Wenyi, Fang Feng, et al. Microstructure and corrosion behavior in several typical conditions of nano-twinned CoCrFeNi high-entropy alloy wires[J]. Chinese Journal of Rare Metals, 2018, 42(12): 1233-1240. [25]曲绍兴, 周昊飞. 纳米孪晶界对金属材料强韧性影响的原子尺度研究[C]//四川: 中国计算力学大会2010 (CCCM2010) 暨第八届南方计算力学学术会议 (SCCM8) 论文集, 2010. |