[1]赵 韩, 吴其林, 黄 康. 国内齿轮研究现状及问题研究[J]. 机械工程学报, 2013, 49(19): 11-20. Zhao Han, Wu Qilin, Huang Kang. Status and problem research on gear study[J]. Journal of Mechanical Engineering, 2013, 49(19): 11-20. [2]Lorenz S Sigl, Günter Rau, Michael Krehl. 表面致密化粉末冶金齿轮的性能[J]. 韩凤麟, 译. 粉末冶金技术, 2012, 30(3): 229-233. Lorenz S Sigl, Günter Rau, Michael Krehl. Properties of surface densified P/M gears[J]. Han Fenglin, Tran. Powder Metallurgy Technology, 2012, 30(3): 229-233. [3]李茂林, 张 峰. 我国汽车用齿轮钢性能及其热处理技术的现状[J]. 装备制造技术, 2013(6): 164-167. Li Maolin, Zhang Feng. Current situation of gear steel properties and heat treatment technology for automobile in China[J]. Equipment Manufacturing Technology, 2013(6): 164-167. [4]李建波, 王永宏, 殷平水, 等. 重载齿轮的结构设计与热处理工艺分析[J]. 科技与企业, 2012(3): 240. [5]宋庭锋. 矿用设备齿轮箱齿轮材料的选择[J]. 煤矿机械, 2011 (7): 104-105. Song Tingfeng. Choice mine equipment reducer gear material[J]. Coal Mine Machinery, 2011 (7): 104-105. [6]曾 敏, 王 充, 任小鸿, 等. 矿山机械齿轮材料选择及热处理分析[J]. 热加工工艺, 2014, 43(22): 34-36. Zeng Min, Wang Chong, Ren Xiaohong, et al. Materials choice and heat treatment analysis of mining mechanical gear[J]. Hot Working Technology, 2014, 43(22): 34-36. [7]苏云玲, 罗远锋, 曲洪亮, 等. 航天动力系统用精密齿轮箱的集成制造工艺[J]. 新技术新工艺, 2017 (11): 3-6. Su Yunling, Luo Yuanfeng, Qu Hongliang, et al. Integrated manufacturing process for precision gear box for space propulsion system[J]. New Technology and New Process, 2017 (11): 3-6. [8]胡 顺. 重载齿轮的结构设计与热处理分析[J]. 金属加工(热加工), 2011(11): 28-29. [9]罗 成. 高强度汽车渗碳齿轮钢的发展及应用[J]. 炼钢, 2006(5): 56-59. Luo Cheng. Development and application of high strength automotive carburizing gear steels[J]. Steelmaking, 2006(5): 56-59. [10]陈 晖, 周细应. 汽车齿轮钢的研究进展[J]. 材料科学与工程学报, 2011 (3): 478-482. Chen Hui, Zhou Xiying. Research progress of gear steel for automobiles[J]. Journal of Materials Science and Engineering, 2011 (3): 478-482. [11]赵振业. 航空高性能齿轮钢的研究与发展[J]. 航空材料学报, 2000(3): 148-157. Zhao Zhenye. Development of higher-performance aeronautical gear steel[J]. Journal of Aeronautical Materials, 2000(3): 148-157. [12]陈运胜. 重载齿轮的合金材料接触面疲劳应力计算模型[J]. 世界有色金属, 2016(2): 82-83. Chen Yunsheng. Fatigue stress calculation model of contact surface of alloy material for heavy load gear[J]. World Nonferrous Metals, 2016(2): 82-83. [13]赵越超, 付 莹. 齿轮材料的选择及热处理[J]. 煤矿机械, 2007, 28(10): 108-110. Zhao Yuechao, Fu Ying. Choice of materials and heat treatment of gears[J]. Coal Mine Machinery, 2007, 28(10): 108-110. [14]史若男, 张瑞亮, 王 铁, 等. 感应淬火齿轮接触疲劳强度试验研究[J]. 机械传动, 2014(11): 18-21. Shi Ruonan, Zhang Ruiliang, Wang Tie, et al. Experimental study of contact fatigue strength for induction hardening gear[J]. Journal of Mechanical Transmission, 2014(11): 18-21. [15]邓玉容. 齿轮常用材料的选择及其热处理工艺分析[J]. 科技创新与应用, 2017 (34): 70-72. [16]石 勇. 浅析材料的选择及热处理对齿轮传动的影响[J]. 机械管理开发, 2011(1): 61-65. Shi Yong. On the influence of material selection and heat treatment on gear transmission[J]. Mechanical Management and Development, 2011(1): 61-65. [17]程 欣. 常用齿轮材料的选择及其热处理工艺[J]. 中国科技信息, 2009(13): 139-149. Cheng Xin. Commonly used gear materials selection and heat treatment process[J]. China Science and Technology Information, 2009 (13): 139-149. [18]樊晓燕. 车床主轴箱齿轮的材料选择及热处理工艺[J]. 机械管理开发, 2009(2): 86-87. Fan Xiaoyan. Material selection and heat treatment of lathe headstock gears[J]. Mechanical Management and Development, 2009(2): 86-87. [19]李玉平. 常用齿轮材料的选择及其热处理工艺[J]. 新余高专学报, 2006(5): 105-106. Li Yuping. Selection of common gear materials and heat treatment process[J]. Journal of Xinyu College, 2006(5): 105-106. [20]王红阁, 杨师斌. 低速重载齿轮渗碳淬火热处理工艺研究[J]. 新技术新工艺, 2008 (4): 91-93. Wang Hongge, Yang Shibin. New technological study on carburizing and quenching heat treatment of low speed tooth surface[J]. New Technology and New Process, 2008(4): 91-93. [21]仲复欣. 大型重载齿轮的深层渗碳[J]. 金属热处理, 1985, 10(3): 28-33. Zhong Fuxin. Deep carburizing of large heavy-duty gears[J]. Heat Treatment of Metals, 1985, 10(3): 28-33. [22]张耀莉, 吴 岩. 大型齿轮深层渗碳工艺的研究[J]. 工业加热, 1999 (4): 39-41. Zhang Yaili, Wu Yan. Research on deep layer carburizing technology for large gears[J]. Industrial Heating, 1999(4): 39-41. [23]黄 星, 顾晓明, 丁 盛, 等. 几种精密重载齿轮的热处理畸变控制[J]. 热处理, 2015(3): 26-30. Huang Xing, Gu Xiaoming, Ding Sheng, et al. Heat treatment distortion controlling of several precise heavy-duty gear[J]. Heat Treatment, 2015(3): 26-30. [24]顾晓明, 刘俊伟, 李康康, 等. 重载齿轮热处理节能增效的一些工艺[J]. 热处理技术与装备, 2015, 36(4): 17-21. Gu Xiaoming, Liu Junwei, Li Kangkang, et al. Several processes of energy saving and efficiency improving in the field of heavy-duty gear heat treatment[J]. Heat Treatment Technology and Equipment, 2015, 36(4): 17-21. [25]刘园园, 黄兴无. 大模数齿轮用钢及热处理[J]. 机械, 2004, 31(S1): 147-148. [26]邓自清, 肖伟中. 渗碳齿轮硬化层深设计理论与试验对比研究[J]. 铸造技术, 2018, 39(4): 903-905. Deng Ziqing, Xiao Weizhong. Comparative study of theory and experiment on the design of hardened layer depth of carburized gear[J]. Foundry Technology, 2018, 39(4): 903-905. [27]马修泉, 薛维华. 20CrNi2Mo钢作为重载齿轮材料的热处理工艺性能分析[J]. 煤矿机械, 2008, 29(2): 80-81. Ma Xiuquan, Xiu Weihua. Heat treatment process performance analysis of 20CrNi2Mo steel as heavy gear material[J]. Coal Mine Machinery, 2008, 29(2): 80-81. [28]蒋秋娥, 莫竞芳, 宋海峰, 等. 12CrNi3等低合金渗碳材料热处理工艺研究[J]. 新技术新工艺, 2017 (9): 76-78. Jiang Qiue, Mo Jingfang, Song Haifeng, et al. Research on heat treatment technology for low-alloy carburizing material such as 12CrNi3[J]. New Technology and New Process, 2017(9): 76-78. [29]张 明. 机床传动主轴用40CrNiMo合金钢的热处理工艺研究[J]. 热加工工艺, 2014 (20): 207-210. Zhang Ming. Study on heat treatment process of 40CrNiMo steel for transmission of machine tool spindle[J]. Hot Working Technology, 2014 (20): 207-210. [30]邹 鹏, 张忠和, 张 博, 等. 高级渗碳淬火钢网状碳化物敏感性的研究[J]. 热处理技术与装备, 2017, 38(4): 25-28. Zou Peng, Zhang Zhonghe, Zhang Bo, et al. Research of sensitivity of network carbide in advanced carburized quenching steel[J]. Heat Treatment Technology and Equipment, 2017, 38(4): 25-28. [31]戴新财. 渗碳齿轮钢晶粒粗化与渗碳工艺的关系推导[J]. 铸造技术, 2018(7): 1586-1590. Dai Xincai. Derivation of relationship between grain coarsening and carburizing process of gear steel[J]. Foundry Technology, 2018(7): 1586-1590. [32]刘爱辉, 隋艳伟. 热处理工艺对重载齿轮用20CrNi2Mo钢性能的影响[J]. 热加工工艺, 2012, 41(10): 182-183. Liu Aihui, Sui Yanwei. Effects of heat treatment process on mechanical properties of 20CrNi2Mo steel as heavy gear material[J]. Hot Working Technology, 2012, 41(10): 182-183. [33]罗长增, 姚亚俊, 石巨岩. 不同淬火介质对17CrNiMo6重载齿轮渗碳钢组织与性能的影响[J]. 金属热处理, 2013, 38(5): 108-111. Luo Changzeng, Yao Yajun, Shi Juyan. Effects of quenching media on microstructure and mechanical properties of 17CrNiMo6 steel for carburized heavy duty gear[J]. Heat Treatment of Metals, 2013, 38(5): 108-111. [34]王龙龙. 18Cr2Ni4WA重载齿轮的热处理工艺研究[J]. 机械管理开发, 2016(1): 71-73. Wang Longlong. Heating technology analysis of 18Cr2Ni4WA heavy duty gear[J]. Mechanical Management and Development, 2016(1): 71-73. [35]白树全, 高美兰, 王 红. 采煤机重载齿轮的制造及其热处理工艺[J]. 铸造技术, 2012, 33(4): 412-413. Bai Shuquan, Gao Meilan, Wang Hong. Manufacturing and heat-treatment process for heavy load gear in coal mining machine[J]. Foundry Technology, 2012, 33(4): 412-413. [36]Kahrobaee Saeed, Mashefi Kashefi. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel[J]. Journal of Magnetism and Magnetic Materials, 2015, 382: 359-365. [37]曾晓蕾. 主减速从动齿轮低压真空渗碳热处理工艺[J]. 现代零部件, 2013(12): 72-74. [38]楚大锋. 真空渗碳热处理齿角残留奥氏体控制[J]. 汽车工艺与材料, 2014 (12): 13-16. [39]楚大锋. 齿轮真空渗碳热处理变形控制探析[J]. 汽车工艺与材料, 2015(3): 48-51. [40]杨 鑫, 张笑康, 刘美莉. 机械齿轮钢渗碳热处理变形行为分析[J]. 山东工业技术, 2017(5): 50. [41]闫京芳. 单件渗碳热处理设备的发展前景[J]. 金属加工(热加工), 2016(S2): 54-56. [42]李 明, 刘晓丽. 渗碳热处理的缺陷研究与对策[J]. 世界有色金属, 2017 (21): 274-275. Li Ming, Liu Xiaoli. Study on the defects of carburizing heat treatment and countermeasures[J]. World Nonferrous Metals, 2017(27): 274-275. [43]李元开. 42CrMo钢重载齿轮的热处理[J]. 金属热处理, 1981, 6(10): 54-56. [44]王滨生, 孙晓滨. 20CrMnTi钢渗氮、低温渗碳淬火复合热处理[J]. 金属热处理, 1998, 23 (3): 4-5. Wang Binsheng, Sun Xiaobin. Nitriding and low temperature carburizing of steel 20CrMnTi[J]. Heat Treatment of Metals, 1998, 23(3): 4-5. [45]Goman A M, Kukareko V A. Contact endurance of gearing teeth subjected to ion-beam nitriding[J]. Journal of Machinery Manufacture and Reliability, 2014, 43(1): 69. [46]Zenker R, 顾剑锋. 电子束淬火与渗氮的复合热处理技术[J]. 热处理, 2012(4): 48-53. Zenker R, Gu Jianfeng. Electron meets nitrogen: Combination of electron beam hardening and nitriding[J]. Heat Treatment, 2012(4): 48-53. [47]高仰之, 刘英祺. 离子渗氮热处理技术及设备发展历程与展望[J]. 金属热处理, 2014, 39(1): 66-74. Gao Yangzhi, Liu Yingqi. Development and prospect of ion nitriding heat treatment technology and equipment[J]. Heat Treatment of Metals, 2014, 39(1): 66-74. . [48] Celko P, Kuffová M, Shearman A. Fatigue resistance of low-alloy steel post long-term plasma-nitriding[J]. Transactions of the IMF, 2016, 94: 86-91. [49]李双喜, 张铁成, 张冠星, 等. 金相法与硬度法测量离子渗氮层深度差异性研究[J]. 金属热处理, 2010, 35(9): 118-120. Li Shuangxi, Zhang Tiecheng, Zhang Guanxing, et al. Measurement difference of plasma nitriding layer by metallography and hardness method[J]. Heat Treatment of Metals, 2010, 35 (9): 118-120. [50]冯显磊, 王 忠, 率秀清, 等. 离子氮化技术在低速重载齿轮上的工艺研究与应用[J]. 热处理技术与装备, 2018, 39(2): 20-25. Feng Xianlei, Wang Zhong, Shuai Xiuqing, et al. Research and application of ion nitriding technology on gear of low speed and heavy loading[J]. Heat Treatment Technology and Equipment, 2018, 39(2): 20-25. [51]李晓喆. 齿轮渗碳、渗氮硬化表面耐磨性研究[J]. 中国金属通报, 2018 (6): 256-257. [52]陈建丽, 马雪洁. 热处理工艺和渗氮处理对H13模具钢硬度的影响[J]. 铸造技术, 2014(4): 695-696. Chen Jianli, Ma Xuejie. Effects of heat treatment process and nitriding . on hardness of H13 die steel[J]. Foundry Technology, 2014 (4): 695-696. [53]陈讲彪, 陈 刚, 于文坛, 等. 感应淬火技术的发展及其应用[J]. 安徽冶金, 2018(3): 58-62. Chen Jiangbiao, Chen Gang, Yu Wentan, et al. Development and application of induction hardening technology[J]. Anhui Metallurgy, 2018 (3): 58-62. [54]刘继全, 周小惠, 田裕民. 大型重载齿轮整体表面感应淬火研究[J]. 大型铸锻件, 1998(3): 24-27. [55]朱会文. 感应热处理的应用与渗碳[J]. 金属加工(热加工), 2015 (5): 56-57. [56]陈国民. 齿轮感应淬火的应用前景[J]. 机械工人(热加工), 2006(11): 5-7. Chen Guomin. Outlook of induction heating applied on gear[J]. Machinist Metal Forming, 2006(11): 5-7. [57]王志明. 齿轮同时双频感应淬火新技术[J]. 机械传动, 2012(11): 108-110. Wang Zhiming. The new technology of gear's simultaneous dual frequency induction hardening[J]. Journal of Mechanical, 2012(11): 108-110. [58]杨连第. 感应淬火用并联振荡电路调谐探讨[J]. 汽车工艺与材料, 2001(6): 27-30. Yang Liandi. Discussion on tuning of parallel oscillatory circuit for induction quenching[J]. Automobile Technology and Material, 2001(6): 27-30. [59]王瑞祥. 在感应淬火应用上并联振荡电路调谐探讨[J]. 工业加热, 2004 (6): 45-49. Wang Ruixiang. The application of tune of parallel oscillation circuit to induction quenching[J]. Industrial Heating, 2004(6): 45-49. [60]邢 壮, 邢志国, 王海斗, 等. 装甲车辆重载齿轮综合强化方法研究现状[J]. 材料导报, 2017, 31(6): 86-94. Xing Zhuang, Xing Zhiguo, Wang Haidou, et al. Research status of comprehensive strengthening methods for heavy-duty gear of armored vehicles[J]. Materials Review, 2017, 31(6): 86-94. |