[1]Zhang S J, Li R G, Kang H J, et al. A high strength and electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment[J]. Materials Science and Engineering A, 2017, 680: 108-114. [2]Abib K, Balanos J A M, Alili B, et al. On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP[J]. Materials Characterization, 2016, 112: 252-258. [3]Zhou J M, Zhu D G, Tang L T, et al. Microstructure and properties of powder metallurgy Cu-1%Cr-0.65%Zr alloy prepared by hot pressing[J]. Vacuum, 2016, 131: 156-163. [4]Sahlot P, Jha K, Dey G K, et al. Quantitative wear analysis of H13 steel tool during friction stir welding of Cu-0.8%Cr-0.1%Zr alloy[J]. Wear, 2017, 378: 82-89. [5]Zhang Q, Gong W, Wei L I U. Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1779-1786. [6]Kanigalpula P, Chatterjee A, Pratihar D, et al. Effects of electron beam welding on microstructure, microhardness, and electrical conductivity of Cu-Cr-Zr alloy plates[J]. Journal of Materials Engineering and Performance, 2015, 24(12): 4681-4690. [7]Wang Z, Wang G P, Jiang Z J. Microstructure and properties of high strength and conductivity Cu-Cr-Zr alloys by TIG welding[J]. Modern Welding, 2010(9): 85-94. [8]Akinlabi E T, Sanusi K O, Muzenda E, et al. Material behaviour characterization of friction stir spot welding of copper[J]. Materials Today: Proceedings, 2017, 4(2): 166-177. [9]He X C, Gu F S, Ball A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 61-66. [10]Sauvage X, Dédé A, Muñoz A C, et al. Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys[J]. Materials Science and Engineering A, 2008, 491: 364-371. [11]Cavaliere P, Cabibbo M, Panella F, et al. 2198 Al-Li plates joints by friction stir welding: Mechanical and microstructural behavior[J]. Materials and Design, 2009, 30: 3622-3631. [12]He D Q, Xie M, Lai R L. Microstructure and mechanical properties of friction stir welded joints of Cu-Cr-Zr alloy plates[J]. Hot Working Technology, 2013, 42: 32-34. [13]Jha K, Kumar S, Nachiket K, et al. Friction stir welding of aged CuCrZr alloy plates[J]. Metallurgical and Materials Transactions, 2018, 49: 223-234. [14]Lai R L, Li X Q, He D Q, et al. Microstructure evolution and localized properties variation of a thick friction stir welded CuCrZr alloy plate[J]. Journal of Nuclear Materials, 2018, 510: 70-79. [15]Bernard Y, Renard V T, Conon P, et al. Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2[J]. Microelectronic Engineering, 2011, 88: 814-816. [16]Xiao B L, Yang Q, Yang J, et al. Enhanced mechanical properties of Mg-Gd-Y-Zr casting via friction stir processing[J]. Journal of Alloys and Compounds, 2011, 509: 2879-2884. [17]Gan W Y, Zhou Z, Zhang H, et al. Evolution of microstructure and hardness of aluminum after friction stir processing[J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 975-981. [18]Hansen N. Polycrystalline strengthening[J]. Metallurgical and Transactions A, 1985, 16: 2167-2190. [19]Nembach E, Neite G. Precipitation hardening of super alloys by ordered γ′-particles[J]. Progress in Materials Science, 1985, 29: 177-319. [20]Conrad H, Narayan J. On the grain size softening in nanocrystalline materials[J]. Scripta Materialia, 2000, 42: 1025-1030. [21]Voyiadjis Z G, Almasri A H. Variable material length scale associated with nanoindentation experiments[J]. Journal of Engineering Mechanics, 2009, 139: 139-148. |