[1]Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scripta Materialia, 2010, 63(8): 815-818. [2]Speer J, Matlock D K, Cooman B C D, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [3]Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 219-237. [4]Matlock D K, Bräutigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[J]. Materials Science Forum, 2003, 426-432(2): 1089-1094. [5]Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [6]林 潇. Q&P高强度钢板热处理过程板形演变规律研究[D]. 北京: 北京科技大学, 2018. [7]康永林, 王 波. TRIP钢板的组织、性能与工艺控制[J]. 钢铁研究学报, 1999, 11(3): 66-70. Kang Yonglin, Wang Bo. Structure and property of TRIP plate and its control process[J]. Journal of Iron and Steel Research, 1999, 11(3): 66-70. [8]Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5): 1279-1288. [9]Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels[J]. Acta Materialia, 2006, 54(19): 5323-5331. [10]Zhang K, Zhang M, Guo Z, et al. A new effect of retained austenite on ductility enhancement in high-strength quenching-partitioning-tempering martensitic steel[J]. Materials Science and Engineering: A, 2011, 528(29/30): 8486-8491. [11]Zhao Z Z, Liang J H, Zhao A M, et al. Effects of the austenitizing temperature on the mechanical properties of cold-rolled medium-Mn steel system[J]. Journal of Alloys and Compounds, 2017, 691: 51-59. [12]Santofimia M, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Materialia, 2011, 59(15): 6059-6068. [13]Liu L, He B B, Cheng G J, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite[J]. Scripta Materialia, 2018, 150: 1-6. [14]李金鑫, 黄兴民, 张 雷, 等. 淬火配分处理对锻态Fe-0.2C-9Mn-3.5Al钢显微组织及力学行为的影响[J]. 金属热处理, 2020, 45(2): 87-93.Li Jinxin, Huang Xingmin, Zhang Lei, et al. Influence of quenching and partitioning treatment on microstructure and mechanical behaviors of forged Fe-0.2C-9Mn-3.5Al steel[J]. Heat Treatment of Metals, 2020, 45(2): 87-93. [15]史文杰, 魏茂源. 淬火-配分钢中残留奥氏体的演变及其对性能的影响[J]. 金属热处理, 2019, 44(6): 47-50. Shi Wenjie, Wei Maoyuan. Evolution of retained austenite in quenching and partitioning steel and its influence on mechanical properties[J]. Heat Treatment of Metals, 2019, 44(6): 47-50. [16]Cho L, Seo E J, De Cooman B C. Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel[J]. Scripta Materialia, 2016, 123: 69-72. [17]Guo H, Zhao A, Ding R, et al. Quenching and partitioning steel produced through hot rolling, direct quenching and annealing[J]. Materials Science and Technology, 2016, 32(15): 1605-1612. [18]陈 辉. C、Mn配分对TRIP效应钢组织与性能影响的研究[D]. 济南: 山东建筑大学, 2017. [19]Xiong X C, Chen B, Huang M X, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013, 68(5): 321-324. |