[1]汪 淼, 张 聪, 胡 锋, 等. 相变诱导塑性汽车用钢的发展现状与趋势[J]. 钢铁研究学报, 2016, 28(8): 1-7. Wang Miao, Zhang Cong, Hu Feng, et al. Current status and trend of TRIP automotive steels[J]. Journal of Iron and Steel Research[J], 2016, 28(8): 1-7. [2]王四根, 花礼先, 王 绪, 等. 低碳硅锰系冷轧相变诱发塑性钢研究[J]. 钢铁, 1995, 30(6): 48-51. Wang Sigen, Hua Lixian, Wang Xu, et al. Low carbon silicon manganese cold-rolled TRIP steel[J]. Iron and Steel, 1995, 30(6): 48-51. [3]吴化, 姜颖, 尤申申, 等. 超级贝氏体组织中残余奥氏体的TRIP效应研究[J]. 机械工程学报, 2014, 50(22): 69-75. Wu Hua, Jiang Ying, You Shenshen, et al. Study on TRIP effect of retained austenite in super-bainite microstructure[J]. Journal of Mechanical Engineering, 2014, 50(22): 69-75. [4]景财年, 王作成, 韩福涛. 相变诱发塑性的影响因素研究进展[J]. 金属热处理, 2005, 30(2): 26-30. Jing Cainian, Wang Zuocheng, Han Fushou. Research progress of the influencing factors on transformation induced plasticity[J]. Heat Treatment of Metals, 2005, 30(2): 26-30. [5]冯树明, 万德成, 王亚婷, 等. Q&P处理低碳中锰钢的显微组织与力学性能[J]. 金属热处理, 2020, 45(4): 69-74. Feng Shuming, Wan Decheng, Wang Yating. Microstructure and mechanical properties of low carbon medium manganese steel treated by Q&P process[J]. Heat Treatment of Metals, 2020, 45(4): 69-74. [6]高绪涛, 赵爱民, 赵征志, 等. 热轧TRIP钢残余奥氏体及其稳定性研究[J]. 材料工程, 2011(11): 39-43. Gao Xutao, Zhao Aimin. Investigation of retained austenite and its stability in hot rolled TRIP steel[J]. Journal of Materials Engineering, 2011(11): 39-43. [7]赵北龙, 王勇围. 残余奥氏体形态对TRIP690钢组织转变的影响[J]. 塑性工程学报, 2012, 19(2): 75-78. Zhao Beilong, Wang Yongwei. Effect of residual austenite morphology on microstructure transformation of TRIP690 steel[J]. Journal of Plasticity Engineering, 2012, 19(2): 75-78. [8]郝京丽, 鞠新华, 崔桂彬, 等. DP590双相钢电解抛光技术的精细研究[J]. 物理测试, 2013, 31(2): 39-42. Hao Jingli, Ju Xinhua, Cui Guibin, et al. Deep investigation on electrolytic polishing of duplex steel[J]. Physics Examination and Testing, 2013, 31(2): 39-42. [9]Knipling K E, Rowenhorst D J, Fonda R W, et al. Effects of focused ion beam milling on austenite stability in ferrous alloys[J]. Materials Characterazation, 2010, 61: 1-6. [10]Konrad J, Zaefferer S, Raabe D. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique[J]. Acta Material, 2006, 54: 1369-1380. [11]Groeber M A, Haley B K, Uchic M D, et al. 3D Reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system[J]. Materials Characterization, 2006, 57(4/5): 259-273. [12]Wright D M, Rickard J J, Kyle N H, et al. The use of dual beam ESEM FIB to reveal the internal ultrastructure of hydroxyapatite nanoparticle-sugar-glass composites[J]. Journal of Materials Science: Materials in Medicine, 2009, 20(1): 203-217. [13]朱泳名, 葛鹰. 基于离子研磨技术的覆铜板结构观察研究[J]. 印制电路信息, 2014(12): 32-34. Zhu Yongming, Ge Ying. Observation of copper clad laminate structure based on the technology of ion milling[J]. Printed Circuit Information, 2014(12): 32-34. [14]谭勇文, 徐天伟, 谢雪冰, 等. 聚焦离子束研磨Au-Ti-GaAs薄膜引起损伤的研究[J]. 材料导报, 2008, 22(S1): 75-77.
Tan Yongwen, Xu Tianwei, Xie Xuebing, et al. Investigation of damage induced in focused ion beam milling of Au-Ti-GaAs thin films[J]. Materials Reports, 2008, 22(S1): 75-77. [15]王付胜, 何鹏, 郁佳琪, 等. 氩离子轰击对中频-直流磁控溅射铝薄膜耐蚀性能的影响[J]. 表面技术, 2019, 48(3): 185-194. Wang Fusheng, He Peng, Yu Jiaqi, et al. Effects of argon ion bombardment on corrosion resistance of Al film deposited by medium frequency direct current magnetron sputtering[J]. Surface Technology, 2019, 48(3): 185-194. |