[1]王 福. 新型GH4099板材的制备与性能研究[J]. 特钢技术, 2018, 24(1): 18-21. Wang Fu. Study on the manufacturing process and properties of a new type GH4099 plate[J]. Special Steel Technology, 2018, 24(1): 18-21. [2]夏长林, 裴丙红, 何云华. GH4099 合金轧制棒材高温持久性能研究[J]. 钢铁研究学报, 2011, 23(2): 115-118. Xia Zhanglin, Pei Binhong, He Yunhua. Study on high temperature creep rupture property of GH4099 alloy rolled bar[J]. Journal of Iron and Steel Research, 2011, 23(2): 115-118. [3]秦升学, 赵蕊蕊, 张弘斌, 等. 时效热处理对GH99中强化相γ'相的影响[J]. 材料热处理学报, 2017, 38(2): 55-60. Qin Shengxue, Zhao Ruirui, Zhang Hongbin, et al. Influence of long-term thermal exposure on γ'-phase of GH99 alloy[J]. Transactions of Materials and Heat Treatment, 2017, 38(2): 55-60. [4]魏育环, 杨枬森, 于万众, 等. GH99镍基合金长期时效后的组织和性能变化[J]. 钢铁研究学报, 1988, 1(4): 33-40. Wei Yuhuan, Yang Nansen, Yu Wanzhong, et al. Variation in microstructure and mechanical properties of GH99 alloy after long-term aging[J]. Journal of Iron and Steel Research, 1988, 1(4): 33-40. [5]庄栋栋, 王丽欣, 蒋 涛, 等. 低碳铝镇静钢冷轧板再结晶过程中显微组织和晶界分布演化[J]. 金属热处理, 2018, 43(2): 57-61. Zhuang Dongdong, Wang Lixin, Jiang Tao, et al. Microstructural and grain boundary distributed evolution of aluminum killed low-carbon steels during recrystallization[J]. Heat Treatment of Metals, 2018, 43(2): 57-61. [6]刘 峰, 康进科, 马 聪, 等. 形变量对GH4169合金微观组织和晶界特征分布的影响[J]. 金属热处理, 2017, 42(2): 11-15. Liu Feng, Kang Jinke, Ma Cong, et al. Effect of deformation on microstructure and grain boundary character distribution of GH4169 alloy[J]. Heat Treatment of Metals, 2017, 42(2): 11-15. [7]毛卫民. 金属的再结晶与晶粒长大[M]. 北京: 冶金工业出版社, 1994: 62. [8]张铭显, 杨 滨, 王胜龙, 等. 形变热处理对316L奥氏体不锈钢晶界特征分布的影响[J]. 金属热处理, 2016, 41(4): 55-58. Zhang Mingxian, Yang Bin, Wang Shenglong, et al. Effect of thermo-mechanical processing on grain boundary character distribution of 316L austenitic stainless steel[J]. Heat Treatment of Metals, 2016, 41(4): 55-58. [9]陈正宗, 刘正东, 包汉生, 等. 固溶温度对新型耐热合金晶界特性的影响[J]. 金属热处理, 2017, 42(1): 31-34. Chen Zhengzong, Liu Zhengdong, Bao Hansheng, et al. Effect of solution temperature on grain boundary character in new heat-resistant alloy[J]. Heat Treatment of Metals, 2017, 42(1): 31-34. [10]丁雨田, 孟 斌, 高钰璧, 等. 固溶处理对GH3625合金板材组织及性能的影响[J]. 材料导报, 2018, 32(1): 243-248. Ding Yutian, Meng Bin, Gao Yubi, et al. Effect of solution treatment on the microstructure and mechanical properties of GH3625 superalloy sheet[J]. Materials Review, 2018, 32(1): 243-248. [11]Zhang Hongbin, Zhang Kaifeng, Lu Zhen, et al. Hot deformation behavior and processing map of a γ′-hardened nickel-based superalloy[J]. Materials Science and Engineering A, 2014, 604: 1-8. [12]Zhang Hongbin, Zhang Kaifeng, Jiang Shaosong, et al. Dynamic recrystallization behavior of a γ′-hardened nickel-based superalloy during hot deformation [J]. Journal of Alloys and Compounds, 2015, 623: 374-385. [13]夏 爽, 周邦新, 陈文觉. 形变及热处理对690合金晶界特征分布的影响[J]. 稀有金属材料与工程, 2008, 37(6): 999-1003. Xia Shuang, Zhou Bangxin, Chen Wenjue. Effect of deformation and heat treatment on the distribution of grain boundary characteristics of alloy 690[J]. Rare Metal Materials and Engineering, 2008, 37(6): 999-1003. [14]Li Defu, Guo Qingmiao, Guo Shengli, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy[J]. Materials & Design, 2011, 32(2): 696-705. [15]李 钧, 苏 诚, 张 磊, 等. Incoloy800合金晶界工程工艺优化研究[J]. 上海金属, 2013, 35(1): 16-20. Li Jun, Su Cheng, Zhang Lei, et al. Optimization of grain boundary engineering of Incoloy800 alloy[J]. Shanghai Metals, 2013, 35(1): 16-20. [16]赵 清, 夏 爽, 周邦新, 等. 形变及热处理对825合金管材晶界特征分布的影响[J]. 金属学报, 2015, 51(12): 1465-1471. Zhao Qing, Xia Shuang, Zhou Bangxin, et al. Effect of deformation and thermomechanical processing on grain boundary character distribution of alloy 825 tubes[J]. Acta Metallurgica Sinica, 2015, 51(12): 1465-1471. [17]王书晗, 刘振宇, 王国栋, 等. 热处理工艺对TWIP钢组织性能的影响[J]. 东北大学学报(自然科学版), 2008, 29(9): 1283-1286. Wang Shuhan, Liu Zhenyu, Wang Guodong, et al. Effect of heat treatment process on microstructure and mechanical properties of TWIP steels[J]. Journal of Northeastern University (Natural Science), 2008, 29(9): 1283-1286. [18]李永乐. 镍基超合金低 CSL Σ3n晶界演变规律分析及唯象型建模[D]. 重庆: 重庆大学, 2018: 37. Li Yongle. Evolution analysis and phenomenological modeling of low CSL Σ3n boundary for Ni-based superalloy[D]. Chongqing: Chongqing University, 2018: 37. [19]韩 涛, 方晓英, 李 宁, 等. 晶界特征分布优化改善304不锈钢晶间腐蚀研究[J]. 热加工工艺, 2011, 40(14): 59-61. Han Tao, Fang Xiaoying, Li Ning, et al. Grain boundary character distribution improving intergranular corrosion of 304 stainless steel[J]. Hot Working Technology, 2011, 40(14): 59-61. |