[1]Nagarajan B, Hu Zhiheng, Song Xu, et al. Development of micro selective laser melting: The state of the art and future perspectives[J]. Engineering, 2019, 5(4): 235-274. [2]滕 庆, 李 帅, 薛鹏举, 等. 激光选区熔化Inconel 718合金高温腐蚀性能[J]. 中国有色金属学报, 2019, 29(7): 1417-1426. Teng Qing, Li Shuai, Xue Pengju,et al. High-temperature corrosion resistance of Inconel 718 fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1417-1426. [3]Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science and Technology, 2019, 35(2): 270-284. [4]魏娟娟, 米国发, 许 磊, 等. 激光增材制造铝合金及其复合材料研究进展[J]. 热加工工艺, 2019, 48(8): 27-31. Wei Juanjuan, Mi Guofa, Xu Lei, et al. Research progress of laser additive manufacturing Al alloy and its composite[J]. Hot Working Technology, 2019, 48(8): 27-31. [5]马乃恒, 方小汉, 梁工英, 等. 激光熔覆原位合成TiCp/Al复合材料[J]. 中国有色金属学报, 2000, 10(6): 843-846. Ma Naiheng, Fang Xiaohan, Liang Gongying, et al. In situ synthesis of TiCp/Al composite by using laser cladding[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(6): 843-846. [6]杜传慧, 苑 飞, 王祝堂. Al-Sc合金[J]. 轻合金加工技术, 2013, 41(8): 11-21. Du Chuanhui, Yuan Fei, Wang Zhutang. Aluminum scandium alloy[J]. Light Alloy Fabrication Technology, 2013, 41(8): 11-21. [7]Lu Z, Tang Y, Zhang L. Atomic mobility in liquid and fcc Al-Si-Mg-RE (RE=Ce, Sc) alloys and its application to the simulation of solidification processes in RE-containing A357 alloys[J]. International Journal of Materials Research, 2017, 108(6): 465-476. [8]Prukkanon W, Srisukhumbowornchai N, Limmaneevichitr C. Modification of hypoeutectic Al-Si alloys with scandium[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 454-460. [9]何 兵, 覃 铭, 梁柳青, 等. Sc含量对Al-Si铸造合金组织与力学性能的影响[J]. 铸造技术, 2017, 38(10): 2360-2364. He Bing, Qin Ming, Liang Liuqing, et al. Effect of Sc content on microstructure and mechanical properties of Al-Si casting alloy[J]. Foundry Technology, 2017, 38(10): 2360-2364. [10]Guan R G, Jin H M, Jiang W S, et al. Quantitative contributions of solution atoms, precipitates and deformation to microstructures and properties of Al-Sc-Zr alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(5): 907-918. [11]Toropova L S, Eskin D G, Kharakterova M L, et al. Advanced Aluminum Alloys Containing Scandium: Structure and Properties[M]. London: Routledge, 2017. [12]Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys[J]. Acta Materialia, 2002, 50(16): 4021-4035. [13]Iwamura S, Miura Y. Loss in coherency and coarsening behavior of Al3Sc precipitates[J]. Acta Materialia, 2004, 52(3): 591-600. [14]Lu Z, Zhang L J, Wang J, et al. Understanding of strengthening and toughening mechanisms for Sc-modified Al-Si-(Mg) series casting alloys designed by computational thermodynamics[J]. Journal of Alloys and Compounds, 2019, 805: 415-425. [15]肖代红, 巢 宏, 陈康华, 等. 微量Sc对AA7085铝合金组织与性能的影响[J]. 中国有色金属学报, 2008, 18(12): 2145-2150. Xiao Daihong, Chao Hong, Chen Kanghua, et al. Effect of minor Sc addition on microstructure and properties of AA7085 alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(12): 2145-2150. [16]黄元春, 邵虹榜, 肖政兵, 等. Al-Ti-B合金中AlB2、TiB2和TiAl3的第一性原理研究[J]. 中国有色金属学报, 2018, 28(8): 1491-1498. Huang Yuanchun, Shao Hongbang, Xiao Zhengbing,et al. First principle study of AlB2, TiB2 and TiAl3 in Al-Ti-B alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(8): 1491-1498. [17]钟 声, 苗 忠, 曹占义. 稀土在铝硅合金中细化和变质作用微观机制[J]. 长春大学学报, 2001, 11(4): 9-11. Zhong Sheng, Miao Zhong, Cao Zhanyi. Delication and modification micromechanism of rare earth in alusil alloy[J]. Journal of Changchun University, 2001, 11(4): 9-11. [18]Lu S Z, Hellawell A. The Mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning[J]. Metallurgical Transactions A, 1987, 18(10): 1721-1733. [19]Li X P, Wang X J, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility[J]. Acta Materialia, 2015, 95: 74-82. [20]Zhu Y Z, Wang S Z, Li B L, et al. Grain growth and microstructure evolution based mechanical property predicted by a modified Hall-Petch equation in hot worked Ni76Cr19AlTiCo alloy[J]. Materials and Design, 2014, 55: 456-462. [21]Thangaraju S, Heilmaier M, Murty B S, et al. On the estimation of true Hall-Petch constants and their role on the superposition law exponent in Al alloys[J]. Advanced Engineering Materials, 2012, 14(10): 892-897. [22]Callister W D, Rethwisch D G. Materials Science and Engineering: An Introduction[M]. New York: Wiley, 2018. [23]Courtney T H. Mechanical Behavior of Materials[M]. Long Grove: Waveland Press, US, 2005. [24]Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility[J]. Nature Materials, 2013, 12(4): 344-350. [25]Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science and Engineering A, 2016, 663: 116-125. [26]Chalmers B. Principles of Solidification: Applied Solid State Physics[M]. Boston: Springer, MA, 1970: 161-170. |