金属热处理 ›› 2020, Vol. 45 ›› Issue (9): 1-9.DOI: 10.13251/j.issn.0254-6051.2020.09.001
• 综述 • 下一篇
陆文杰, 罗贤, 黄斌, 李鹏涛, 杨延清
收稿日期:
2020-03-23
出版日期:
2020-09-25
发布日期:
2020-12-29
通讯作者:
罗贤,副教授,E-mail:luoxian@nwpu.edu.cn
作者简介:
陆文杰(1990—),男,博士研究生,主要研究方向为高熵合金的组织结构调控,E-mail:965011882@qq.com
基金资助:
Lu Wenjie, Luo Xian, Huang Bing, Li Pengtao, Yang Yanqing
Received:
2020-03-23
Online:
2020-09-25
Published:
2020-12-29
摘要: 高熵合金是近年来涌现出的一种新型合金,突破了以一种或者两种元素为主、少量添加元素为辅的传统合金设计理念。作为高熵合金体系一个重要分支—FCC结构的高熵合金,具有高损伤容限、良好的抗辐照能力、高耐磨、耐腐蚀性能等一系列优异的性能,可以作为理想的工程结构材料。然而,FCC结构高熵合金强度-塑性不匹配严重制约了其工程应用。研究表明,析出强化可以有效提高FCC结构高熵合金的强度,产生优异的强度-塑性匹配性能,各国学者相继开发出大量的高性能析出强化高熵合金体系。本文主要介绍了FCC结构高熵合金的析出强化研究,包括非共格析出相和共格析出相,着重介绍了研究现状以及强韧化的影响机制,并对未来高熵合金析出强化研究进行了展望。
中图分类号:
陆文杰, 罗贤, 黄斌, 李鹏涛, 杨延清. FCC结构高熵合金的析出强化研究进展[J]. 金属热处理, 2020, 45(9): 1-9.
Lu Wenjie, Luo Xian, Huang Bing, Li Pengtao, Yang Yanqing. Research progress on precipitation strengthening of FCC structure high-entropy alloys[J]. Heat Treatment of Metals, 2020, 45(9): 1-9.
[1] Cantor B,Chang I T H,Knight P,et al.Microstructural development in equiatomic multicomponent alloys[J].Materials Science and Engineering A,2004,375-377:213-218. [2] 刘 聪,彭文屹,江长双,等.退火处理对AlCoCuFeNi0.2高熵合金组织与性能的影响[J].金属热处理,2019,44(6):108-112. Liu Cong,Peng Weiyi,Jiang Changshuang,et al.Effect of annealing treatment on microstructure and properties of AlCoCuFeNi0.2 high-entropy alloy[J].Heat Treatment of Metals,2019,44(6):108-112. [3] Yeh J W,Lin S J,Chin T S,et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J].Metallurgical and Materials Transactions A,2004,35(8):2533-2536. [4] Miracle D B,Senkov O N.A critical review of high entropy alloys(HEAs)and related concepts[J].Acta Materialia,2017,122:448-511. [5] Zhang Y,Zuo T T,Tang Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science,2014,61:1-93. [6] Ye Y F,Wang Q,Lu J,et al.High-entropy alloy:Challenges and prospects[J].Materials Today,2015,19(6):349-362. [7] Yao M J,Pradeep K G,Tasan C C,et al.A novel,single phase,non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J].Scripta Materialia,2014,72-73:5-8. [8] Antonov S,Detrois M,Tin S.Design of novel precipitate-strengthened Al-Co-Cr-Fe-Nb-Ni high-entropy superalloys[J].Metallurgical and Materials Transactions A,2017,49:305-320. [9] Zhou Y,Zhou D,Jin X,et al.Design of non-equiatomic medium-entropy alloys[J].Scientific Reports,2018,8(1):1236. [10] Guo W,Dmowski W,Noh J Y,et al.Local atomic structure of a high-entropy alloy:An X-ray and neutron scattering study[J].Metallurgical and Materials Transactions A,2012,44:1994-1997. [11] Yeh J W,Chang S Y,Hong Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics,2007,103(1):41-46. [12] Tsai K Y,Tsai M H,Yeh J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J].Acta Materialia,2013,61(13):4887-4897. [13] 翟逸玥,寇生中,杨慧妮.AlxCrFeNiMn高熵合金的组织和性能[J].金属热处理,2019,44(7):144-149. Zhai Yiyue,Kou Shengzhong,Yang Huini.Microstructure and properties of AlxCrFeNiMn high entropy alloys[J].Heat Treatment of Metals,2019,44(7):144-149. [14] Gludovatz B,Hohenwarter A,Thurston K V S,et al.Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures[J].Nature Communications,2016,7:10602. [15] Gludovatz B,Hohenwarter A,Catoor D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science,2014,345(6201):1153-1158. [16] Laplanche G,Kostka A,Reinhart C,et al.Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J].Acta Materialia,2017,128:292-303. [17] Senkov O N,Scott J M,Senkova S V,et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J].Journal of Alloys and Compounds,2011,509:6043-6048. [18] Senkov O N,Wilks G B,Scott J M,et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J].Intermetallics,2011,19:698-706. [19] Huang H,Wu Y,He J,et al.Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J].Advanced Materials,2017,29(30):1-7. [20] Gao M,Alman D.Searching for next single-phase high-entropy alloy compositions[J].Entropy,2013,15(2):4504-4519. [21] Soler R,EvirgenA,Yao M,et al.Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure[J].Acta Materialia,2018,156(1):86-96. [22] Takeuchi A,Amiya K,Wada T,et al.High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams[J].Jom,2014,66(10):1984-1992. [23] Granberg F,Nordlund K,Ullah M W,et al.Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys[J].Physical Review Letters,2016,116(13):1-8. [24] Lu C,Niu L,Chen N,et al.Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys[J].Nature Communications,2016,7:13564. [25] Poletti M G,Fiore G,Gili F,et al.Development of a new high entropy alloy for wear resistance:FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C[J].Materials and Design,2017,115:247-254. [26] Hsu Y J,Chiang W C,Wu J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J].Materials Chemistry and Physics,2005,92(1):112-117. [27] Lee C P,Chen Y Y,Hsu C Y,et al.The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx[J].Journal of the Electrochemical Society,2007,154(8):424-430. [28] Toda-Caraballo I,Pedro E J,Rivera-Díaz-del-Castillo.Modelling solid solution hardening in high entropy alloys[J].Acta Materialia,2015,85:14-23. [29] Lu W J,Luo X,Yang Y Q,et al.Effects of Al addition on structural evolution and mechanical properties of the CrCoNi medium-entropy alloy[J].Materials Chemistry and Physics,2019,238:121841. [30] He J Y,Liu W H,Wang H,et al.Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J].Acta Materialia,2014,62:105-113. [31] Kumar N,Komarasamy M,Nelaturu P,et al.Friction stir processing of a high entropy alloy Al0.1CoCrFeNi[J].JOM,2015,67(5):1007-1013. [32] Yoshida S,Bhattacharjee T,Bai Y,et al.Friction stress and Hall-Petch relationship in CoCrNiequi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing[J].Scripta Materialia,2017,134:33-36. [33] Sathiyamoorthi P,Basu J,Kashyap S,et al.Thermal stability and grain boundary strengthening in ultraflne-grained CoCrFeNi high entropy alloy composite[J].Materials and Design,2017,134:426-433. [34] Liu W H,Wu Y,He J Y,et al.Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J].Scripta Materialia,2013,68(7):526-529. [35] Liu W H,Lu Z P,He J Y,et al.Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases[J].Acta Materialia,2016,116:332-342. [36] Zhang L,Huo X,Wang A,et al.A ductile high entropy alloy strengthened by nano sigma phase[J].Intermetallics,2020,122:106813. [37] Ming K,Bi X,Wang J.Precipitation strengthening of ductile Cr15Fe20Co35Ni20Mo10 alloys[J].Scripta Materialia,2017,137:88-93. [38] Bae J W,Park J M,Moon J,et al.Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys[J].Journal of Alloys and Compounds,2019,781:75-83. [39] Lu W J,Luo X,Yang Y Q,et al.Effects of Nb additions on structure and mechanical properties evolution of CoCrNi medium-entropy alloy[J].Materials Express,2019,9:291-298. [40] He F,Wang Z,Cheng P,et al.Designing eutectic high entropy alloys of CoCrFeNiNbx[J].Journal of Alloys and Compounds,2015,656:284-289. [41] Liu W H,He J Y,Huang H L,et al.Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J].Intermetallics,2015,60:1-8. [42] Gao X,Lu Y,Zhang B,et al.Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J].Acta Materialia,2017,141:59-66. [43] Wani I S,Bhattacharjee T,Sheikh S,et al.Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy[J].Materials Research Letters,2016,4:174-179. [44] Gwalani B,Soni V,Lee M,et al.Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy[J].Materials and Design,2017,121:254-260. [45] Dong Y,Gao X,Lu Y,et al.A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties[J].Materials Letters,2016,169:62-64. [46] He J Y,Wang H,Huang H L,et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J].Acta Materialia,2016,102:187-196. [47] Zhao Y L,Yang T,Tong Y,et al.Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy[J].Acta Materialia,2017,138:72-82. [48] Yang T,Zhao Y,Liu W,et al.L12-strengthened high-entropy alloys for advanced structural applications[J].Journal of Materials Research,2018,33:2983-2997. [49] Lu W J,Luo X,Yang Y Q,et al.Nano-precipitates strengthened non-equiatomic medium-entropy alloy with outstanding tensile properties[J].Materials Science and Engineering A,2020,780:139218. [50] Chen Y,Deng H W,Xie Z M,et al.Tailoring microstructures and tensile properties of a precipitation-strengthened(FeCoNi)94Ti6 medium-entropy alloy[J].Journal of Alloys and Compounds,2020,828:154457. [51] He F,Chen D,Han B,et al.Design of DO22 superlattice with superior strengthening effect in high entropy alloys[J].Acta Materialia,2019,167:275-286. [52] Lu W J,Luo X,Yang Y Q,et al.Co-free non-equilibrium medium-entropy alloy with outstanding tensile properties[J].Journal of Alloys and Compounds,2020,833:155074. [53] Wu H,Huang S,Zhu C,et al.Excellent mechanical properties of in-situ TiC/FeCrNiCuV0.1 high entropy alloy matrix composites[J].Materials Letters,2019,257:126729. [54] 张太超,李俊魁,杨春辉,等.Y2O3对CoCrFeMnNi高熵合金退火稳定性的影响[J].金属热处理,2019,44(1):195-204. Zhang Taichao,Li Junkui,Yang Chunhui,et al.Effect of Y2O3 on phase stability of CoCrFeMnNi high entropy alloy after annealing[J].Heat Treatment of Metals,2019,44(1):195-204. [55] Xie Y,Zhou D,Luo Y,et al.Fabrication of CoCrFeNiMn high entropy alloy matrix composites by thermomechanical consolidation of a mechanically milled powder[J].Materials Characterization,2019,148:307-316. [56] Deng Y,Tasan C C,Pradeep K G,et al.Design of a twinning-induced plasticity high entropy alloy[J].Acta Materialia,2015,94:124-133. [57] Guo W,Su J,Lu W,et al.Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy[J].Acta Materialia,2020,185:45-54. [58] Wu Z,Bei H,Pharr G M,et al.Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J].Acta Materialia,2014,81:428-441. [59] Ma S G,Zhang S F,Qiao J W,et al.Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification[J].Intermetallics,2014,54:104-109. [60] Shun T T,Du Y C.Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy[J].Journal of Alloys and Compounds,2009,479(1/2):157-160. [61] Wu Z,Bei H.Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy[J].Materials Science and Engineering A,2015,640:217-224. [62] Niu S,Kou H,Guo T,et al.Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy[J].Materials Science and Engineering A,2016,671:82-86. [63] Yang T,Zhao Y L,Tong Y,et al.Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J].Science,2018,362(6417):933-937. [64] Tong Y,Chen D,Han B,et al.Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures[J].Acta Materialia,2019,165:228-240. [65] He J Y,Wang H,Wu Y,et al.Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys[J].Intermetallics,2016,79:41-52. [66] Chang Y J,Yeh A C.The formation of cellular precipitate and its effect on the tensile properties of a precipitation strengthened high entropy alloy[J].Materials Chemistry and Physics,2017,210:1-9. [67] Zhao Y L,Yang T,Zhu J H,et al.Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates[J].Scripta Materialia,2018,148:51-55. [68] Lu Y,Dong Y,Guo S,et al.A promising new class of high-temperature alloys:Eutectic high-entropy alloys[J].Scientific Reports,2014,4:6200. [69] Huo W,Zhou H,Fang F,et al.Microstructure and properties of novel CoCrFeNiTax eutectic high-entropy alloys[J].Journal of Alloys and Compounds,2018,735:897-904. [70] Jiang H,Han K,Gao X,et al.A new strategy to design eutectic high-entropy alloys using simple mixture method[J].Materials and Design,2018,142:101-105. [71] Oblak J M,Duvall D S,Paulonis D F,et al.An estimate of the strengthening arising from coherent,tetragonally-distorted particles[J].Materials Science and Engineering,1974,13(1):51-56. [72] Chaturvedi M C,Chung D.Yielding behavior of a γ″-precipitation strengthened Co-Ni-Cr-Nb-Fe alloy[J].Metallurgical and Materials Transactions A,1981,12(1):77-81. [73] Zhao Y Y,Chen H W,Lu Z P,et al.Thermal stability and coarsening of coherent particles in a precipitation-hardened(NiCoFeCr)94Ti2Al4 high-entropy alloy[J].Acta Materialia,2018,147:184-194. [74] Zhao Y,Yang T,Han B,et al.Exceptional nanostructure stability and its origins in the CoCrNi-based precipitation-strengthened medium-entropy alloy[J].Materials Research Letters,2019,7(4):152-158. [75] Yu C Y,Xu X D,Chen M W,et al.Atomistic mechanism of nano-scale phase separation in fcc-based high entropy alloys[J].Journal of Alloys and Compounds,2015,663:340-344. [76] Xu X D,Liu P,Guo S,et al.Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy[J].Acta Materialia,2015,84:145-152. |
[1] | 骆再斌, 范子泽, 彭振. 轻质高熵合金的研究进展[J]. 金属热处理, 2022, 47(4): 100-107. |
[2] | 赵子硕, 武美萍, 缪小进, 崔宸, 龚玉玲. 激光功率对FeCoNiCrMo高熵合金/氧化石墨烯复合涂层组织及耐腐蚀性能的影响[J]. 金属热处理, 2022, 47(4): 251-257. |
[3] | 梅金娜, 姜凤阳, 卫娜, 刘浪浪, 思芳, 刘松涛, 王俊勃, 刘江南. 轧制变形对高熵合金微观组织和力学性能的影响[J]. 金属热处理, 2022, 47(3): 67-71. |
[4] | 时海芳, 李强. 碳含量对Al0.5Co0.5NiCrFe高熵合金涂层组织与性能的影响[J]. 金属热处理, 2022, 47(3): 136-141. |
[5] | 刘宏武, 李志昂, 高帆, 李臻熙, 王青峰. Al25Nb20Ti30Zr25低密度高熵合金的组织和性能[J]. 金属热处理, 2022, 47(2): 20-25. |
[6] | 韩晓虎, 田林海, 王振霞, 黄天阳, 郑家圣, 王居庄, 唐宾, 吴玉程. 钨表面WTaTiVCr高熵合金层的组织与性能[J]. 金属热处理, 2022, 47(1): 185-191. |
[7] | 陈明宣, 马强, 孟君晟, 李成硕, 史晓萍. 高熵合金涂层的研究进展[J]. 金属热处理, 2021, 46(9): 7-14. |
[8] | 李荣斌, 李珂, 蒋春霞, 张如林. AlCrTaTiZrV高熵合金氮化物扩散阻挡层的制备及其热稳定性[J]. 金属热处理, 2021, 46(9): 216-222. |
[9] | 马植甄, 朱佳浩, 张晖. Si对高熵合金涂层组织和高温抗氧化性能的影响[J]. 金属热处理, 2021, 46(8): 46-50. |
[10] | 张宏亮, 冯光宏, 王宝山. 直轧条件下含Nb钢筋中Nb(C, N)的析出强化机理及控冷工艺优化[J]. 金属热处理, 2021, 46(8): 133-138. |
[11] | 吴颖, 曾强, 肖辉进, 朱绍维. 退火处理对3D打印CoCrFeMnNi高熵合金组织和性能的影响[J]. 金属热处理, 2021, 46(8): 192-196. |
[12] | 张彝, 谷臻, 高帅龙, 席生岐. 激光熔覆AlxNbMn2FeMoTi0.5高熵合金涂层的组织与性能[J]. 金属热处理, 2021, 46(6): 146-152. |
[13] | 武雅桃, 黄德军, 杨慧君, 张敏, 乔珺威. 不完全再结晶Fe40Mn10Cr25Ni25高熵合金的室温及低温力学性能[J]. 金属热处理, 2021, 46(6): 160-167. |
[14] | 马晓杰, 刘立宁, 陈祥光, 臧伟. Al-Er-Cu合金架空导线的导电性能[J]. 金属热处理, 2021, 46(5): 156-159. |
[15] | 高天宇, 乔珺威, 吴玉程. FeMnCoCr系亚稳高熵合金的研究进展[J]. 金属热处理, 2021, 46(4): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 中国机械总院集团北京机电研究所有限公司 《金属热处理》编辑部
北京海淀区学清路18号 北京机电研究所有限公司内 邮政编码:100083 电话:010-62935465 82415083 E-mail:jsrcl@vip.sina.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn