[1]Park Jae-Yong, Seo Wonil, Yoo Sehoon, et al. Effect of Cu electroplating parameters on microvoid formation and high-speed shear strength in Sn-3.0Ag-0.5Cu/Cu joints[J]. Journal of Alloys and Compounds, 2017, 724: 492-500. [2]Ho C E, Hsu L H, Yang C H, et al. Effect of Pd(P) thickness on the soldering reaction between Sn-3Ag-0.5Cu alloy and ultrathin-Ni(P)-type Au/Pd(P)/Ni(P)/Cu metallization pad[J]. Thin Solid Films, 2015, 584: 257-264. [3]Liu Baolei, Tian Yanhong, Liu Wei, et al. TEM observation of interfacial compounds of SnAgCu/ENIG solder bump after laser soldering and subsequent hot air reflows[J]. Materials Letters, 2016, 163: 254-257. [4]Kim Jungsoo, Jung Seung-Boo, Yoon Jeong-Won. Optimal Ni(P) thickness and reliability evaluation of thin-Au/Pd(P)/Ni(P) surface-finish with Sn-3.0Ag-0.5Cu solder joints[J]. Journal of Alloys and Compounds, 2019, 805: 1013-1024. [5]Ma Z L, Gourlay C M. Nucleation, grain orientations, and microstructure of Sn-3Ag-0.5Cu soldered on cobalt substrates[J]. Journal of Alloys and Compounds, 2017, 706: 596-608. [6]Ho C E, Lin Y C, Wang S J. Sn-Ag-Cu solder reaction with Au/Pd/Ni(P) and Au/Pd(P)/Ni(P) platings[J]. Thin Solid Films, 2013, 544: 551-556. [7]Wang Y W, Lin Y W, Tu C T, et al. Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 121-127. [8]Tae Jin Kim, Young Min Kim, Young-Ho Kim. Sputtered Ni-Zn under bump metallurgy (UBM) for Sn-Ag-Cu solders[J]. Journal of Alloys and Compounds, 2012, 535: 33-38. [9]Ouyang F Y, Hong G L, Hsu Y R, et al. Thermomigration in Co/SnAg/Co and Cu/SnAg/Co sandwich structure[J]. Microelectronics Reliability, 2019, 97: 16-23. [10]Vuorinen V, Dong H Q, Laurila T. Effect of Ti on the interfacial reaction between Sn and Cu[J]. Journal of Materials Science: Materials in Electronics, 2011, 23(1): 68-74. [11]Fu W, Song X G, Hu S P, et al. Brazing copper and alumina metallized with Ti-containing Sn0.3Ag0.7Cu metal powder[J]. Materials and Design, 2015, 87: 579-585. [12]Han Y D, Gao Y, Zhang S T, et al. Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation[J]. Materials Science and Engineering A, 2019, 761: 138051. [13]Wang J Y, Tang Y K, Yeh C Y, et al. Kinetics of Ni solid-state dissolution in Sn and Sn3.5Ag alloys[J]. Journal of Alloys and Compounds, 2019, 797: 684-691. [14]Chou T T, Song R W, Chen W Y, et al. Enhancement of the mechanical strength of Sn-3.0Ag-0.5Cu/Ni joints via doping minor Ni into solder alloy[J]. Materials Letters, 2019, 235: 180-183. [15]Bi J L, Hu A M, Hu J, et al. Effect of Cr additions on interfacial reaction between the Sn-Zn-Bi solder and Cu/electroplated Ni substrates[J]. Microelectronics Reliability, 2011, 51(3): 636-641. [16]Bang Junghwan, Yu Dong-Yurl, Ko Yong-Ho, et al. Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate[J]. Microelectronics Reliability, 2019, 99: 62-73. [17]Chen W M, Kang S K, Kao C R. Effects of Ti addition to Sn-Ag and Sn-Cu solders[J]. Journal of Alloys and Compounds, 2012, 520: 244-249. [18]Tin Tin Kyaw, Phacharaphon Tunthawiroon, Kannachai Kanlayasiri, et al. A study on wettability and formation of intermetallic phase between Co-Cr-Mo alloy and Sn-solder used as a potential under bump metallization for flip-chip packages[J]. Intermetallics, 2020, 125: 106875. [19]Luo T B, Hu A M, Hu J, et al. Microstructure and mechanical properties of Sn-Zn-Bi-Cr lead-free solder[J]. Microelectronics Reliability, 2012, 52(3): 585-588. [20]Jang Se-Young, Wolf J, Ehrmann O, et al. Crcu based UBM (under bump metallization) study with electroplated Pb/63Sn solder bumps-interfacial reaction and bump shear strength[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(1): 245-254. [21]Zou H F, Yang H J, Zhang Z F. Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals[J]. Acta Materialia, 2008, 56(11): 2649-2662. [22]Tseng Chien-Fu, Wang Kai-Jheng, Duh Jenq-Gong. Interfacial reactions of Sn-3.0Ag-0.5Cu Solder with Cu-Mn UBM during aging[J]. Journal of Electronic Materials, 2010, 39(12): 2522-2527. [23]Hu X W, Tao X, Leon M Keer, et al. Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints[J]. Materials Science and Engineering A, 2016, 673: 167-177. [24]Yang C R, Le F L, Lee S W R. Experimental investigation of the failure mechanism of Cu-Sn intermetallic compounds in SAC solder joints[J]. Microelectronics Reliability, 2016, 62: 130-140. [25]Hu X W, Bao N F, Li Q L. Shear strength and fracture behavior of solder/Kovar joints with electroplated Cu film[J]. Vacuum, 2019, 167: 428-437. [26]姬 峰, 薛松柏, 张 亮, 等. SnAgCu焊点界面金属间化合物的研究现状[J]. 焊接, 2011(4): 20-26. [27]Ghosh M, Kar A, Das S K, et al. Aging characteristics of Sn-Ag eutectic solder alloy with the addition of Cu, In, and Mn[J]. Metallurgical and Materials Transactions A, 2009, 40: 2369-2376. [28]邹 建, 吴丰顺, 王 波, 等. 电子封装微焊点中的柯肯达尔孔洞问题[J]. 电子工艺技术, 2010, 31(1): 1-5. Zou Jian, Wu Fengshun, Wang Bo, et al. Kirkendall voids in micron solder joint used in electronic packaging[J]. Electronics Process Technology, 2010, 31(1): 1-5. |