[1]Chen M H, Shen M L, Zhu S L, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 ℃[J]. Corrosion Science, 2013, 73(2): 331-341. [2]Song P, Naumenko D, Vassen R, et al. Effect of oxygen content in NiCoCrAlY bondcoat on the lifetimes of EB-PVD and APS thermal barrier coatings[J]. Surface and Coatings Technology, 2013, 221(16): 207-213. [3]Mishra S B, Chandea R, Prakash S. Characterisation and erosion behaviour of NiCrAlY coating produced by plasma spray method on two different Ni-based superalloys[J]. Materials Letters, 2008, 62(12): 1999-2002. [4]Rajendran R. Gas turbine coatings-An overview[J]. Engineering Failure Analysis, 2012, 26: 355-369. [5]Deshpande S, Sampath T S, Zhang H. Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings case study for Ni-Al[J]. Surface and Coating Technology, 2006, 200(18/19): 5395-5406. [6]Zhang Q. Developing tendency of the chemical vapor deposition technology[J]. Surface Technology, 1996, 25(2): 1-3. [7]Hu T L, Huang H L, Gan D, et al. The microstructure of aluminized type 310 stainless steel[J]. Surface and Coating Technology, 2006, 201(6): 3502-3509. [8]Awan G H, Hasan F U. The morphology of coating/substrate interface in hot-dip-aluminizes steels[J]. Material Science and Engineering A, 2008, 472(1/2): 157-165. [9]Frutos E, Gonzalez-Carrasco J L, Jimenez J A, et al. Development of hard intermetallic coatings on austenitic stainless steel by hot dipping in an Al-Si alloy[J]. Surface and Coating Technology, 2009, 203: 2916-2920. [10]Cheng W J, Liao Y J, Wang C J. Effect of nickel pre-plating on high-temperature oxidation behavior of hot-dipped aluminide mild steel[J]. Materials Characterization, 2013, 82: 58-65. [11]Wang W, Li Z, Shen W J, et al. Phase equilibria of Zn-Al-Ti ternary system at 450 and 600 ℃[J]. Transactions of Nonferrous Metal Society of China, 2020, 30(4): 1005-1016. [12]李 智, 匡小围, 郑慧芸, 等. 一种热浸镀铝用新型助镀剂及其使用方法: 中国, 106148868A[P]. 2016-11-23. [13]Wang F H, Lou H Y, Bai L X, et al. Hot corrosion of yttrium-modified aluminide coatings[J]. Material Science and Engineering A, 1989, 120: 387-389. [14]Wallwork G R, Hed A Z. Some limiting factors in the use of alloys at high temperatures[J]. Oxidation of Metals, 1971, 3(2): 171-184. [15]林盼盼. GH5188合金高温氧化性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 21. [16]郭建亭. 高温合金材料学[M]. 北京: 科学出版社, 2008: 578. [17]Young E W A, Dewt J H W. The use of an 18O tracer and Ruther-ford back scattering spectrometry to study the oxidation mechanism of NiAl[J]. Solid State Ionics, 1985, 16(1/4): 39-46. [18]Golightly F A. The relationship between oxide grain morphology and growth mechanisms for Fe-Cr-Al and Fe-Cr-Al-Y alloys[J]. Journal of the Electrochemical Society, 1979, 126(6): 1035. [19]Hindam H M, Smeltzer W W. Growth and microstructure α-A12O3 on β-NiAl[J]. Journal of the Electrochemical Society, 1980, 127(7): 1630-1635. [20]Jedliński J, Mrowec S. The influence of implanted yttrium on the oxidation behaviour of β-NiAl[J]. Materials Science and Engineering, 1987, 87: 281-287. [21]郑运荣, 张德堂. 高温合金与钢的彩色金相研究[M]. 北京: 国防工业出版社, 1999: 189-192. [22]贾志涛. K38合金热浸镀铝抗高温氧化性能的研究[D]. 哈尔滨: 哈尔滨工程大学, 2004. [23]张忠礼. 含Al热喷涂涂层的高温表现与Al扩散机制[D]. 沈阳: 沈阳工业大学, 2007. [24]施月杰. K4104镍基高温合金沉积MCrAlY涂层抗高温氧化性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. [25]彭 新, 姜肃猛, 孙旭东, 等. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为[J]. 金属学报, 2016, 52(5): 625-631. Peng Xin, Jiang Sumeng, Sun Xudong, et al. Cyclic oxidation and hot corrosion behaviors of a gradient NiCoCrAlYSi coating[J]. Acta Metallurgica Sinica, 2016, 52(5): 625-631. |