[1]刘锦溪, 张继祥, 陆燕玲, 等. 长期时效对C276合金组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 763-768. Liu Jinxi, Zhang Jixiang, Lu Yanling, et al. Effect of long-term aging on microstructure and mechanical properties of alloy C276[J]. Acta Metallurgical Sinica, 2013, 49(6): 763-768. [2]赵雪会, 白真权, 冯耀荣, 等. 热处理温度及析出相对镍基合金腐蚀性能的影响[J]. 材料热处理学报, 2011, 33(8): 39-44. Zhao Xuehui, Bai Zhenquan, Feng Yaorong, et al. Effects of heat treatment and precipitated phase on corrosion resistance of Ni-based alloy[J]. Transactions of Materials and Heat Treatment, 2011, 33(8): 39-44. [3]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials and Design, 2011, 32(4): 1733-1759. [4]Zhu H J, Chen F, Zhang H M, et al. Review on modeling and simulation of microstructure evolution during dynamic recrystallization using cellular automaton method[J]. Science China Technological Sciences, 2019, 63(3): 357-396. [5]Janssens K G F. An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials[J]. Mathematics and Computers in Simulation, 2009, 80(7): 1361-1381. [6]Mecking H, Kocks U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica, 1981, 29(11): 1865-1875. [7]Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working[J]. Acta Metallurgica, 1978, 26(5): 801-813. [8]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta Materialia, 2001, 49(16): 3163-3175. [9]Madej L, Sitko M, Legwand A, et al. Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization[J]. Journal of Computational Science, 2018, 26: 66-77. [10]Popova E, Staraselski Y, Brahme A, et al. Coupled crystal plasticity-probabilistic cellular automata approach to model dynamic recrystallization in magnesium alloys[J]. International Journal of Plasticity, 2015, 66: 85-102. [11]郑 毅, 宋建丽, 杜诗文, 等. LZ50钢奥氏体晶粒长大的元胞自动机模拟[J]. 塑性工程学报, 2015, 22(6): 141-147. Zheng Yi, Song Jianli, Du Shiwen, et al. Cellular automata simulation of austenite grain growth for LZ50 steel[J]. Journal of Plasticity Engineering, 2015, 22(6): 141-147. [12]Kim D K, Lee H W, Jung K H, et al. Mesoscopic modeling of primary recrystallization of AA1050 with curvature-Driven interface migration effect[J]. Materials Transactions, 2013, 54(1): 81-89. [13]Zhang C, Tang X L, Zhang L W, et al. Cellular automaton modelling of dynamic recrystallization of Ni-Cr-Mo-based C276 superalloy during hot compression[J]. Journal of Materials Research, 2019, 34(18): 3093-3103. |