[1]翁立奎, 宋鹏飞, 贾亦轩, 等. 电站锅炉常用材料及研究现状[J]. 热加工工艺, 2021, 50(2): 18-21. Weng Likui, Song Pengfei, Jia Yixuan, et al. Common material of thermal power boilers and its research status[J]. Hot Working Technology, 2021, 50(2): 18-21. [2]徐路军. 大直径P91厚壁锅炉用钢管的生产工艺开发[J]. 钢管, 2019, 48(4): 51-55. Xu Lujun. Development of manufacturing process for P91 steel large diameter thick wall boiler pipe[J]. Steel Pipe, 2019, 48(4): 51-55. [3]何 彪, 赵庆权, 肖功业, 等. P91无缝钢管产品质量的探讨[J]. 四川冶金, 2016(6): 26-30. He Biao, Zhao Qingquan, Xiao Gongye, et al. Quality discuss for P91 seamless pipe[J]. Sichuan Metallurgy, 2016(6): 26-30. [4]Zhang X Z, Wu X J, Liu R, et al. Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2017, 689: 345-352. [5]刘鸣放, 刘胜新. 金属材料力学性能手册[M]. 北京: 机械工业出版社, 2011. [6]张天睿, 施晓明. P91管道硬度及组织变化对金属监督作用探讨[J]. 焊接技术, 2019, 48(S1): 105-107. Zhang Tianrui, Shi Xiaoming. Discussion on the effect of hardness and microstructure change of P91 pipeline on metal supervision[J]. Welding Technology, 2019, 48(S1): 105-107. [7]高立新, 李炜丽, 侯小龙, 等. P91钢高温蒸汽管道低硬度对其理化性能的影响[J]. 华北电力技术, 2015(7): 37-43. Gao Lixin, Li Weili, Hou Xiaolong, et al. Effects of low hardness on the physical properties of high temperature steam pipe of P91 steel[J]. North China Electric Power, 2015(7): 37-43. [8]范德良, 王志武, 句光宇. P91钢管道异常低硬度部位的组织和性能[J]. 金属热处理, 2020, 45(3): 1-6. Fan Deliang, Wang Zhiwu, Ju Guangyu. Microstructure and properties of P91 steel pipeline in abnormal low hardness parts[J]. Heat Treatment of Metals, 2020, 45(3): 1-6. [9]Pandey C, Girl A, Mahapatra M M. Evolution of phases in P91 steel in various heat treat conditions and their effect on microstructure stability and mechanical properties[J]. Materials Science and Engineering A, 2016, 664: 58-74. [10]Zhang X, Zeng Y, Cai W, et al. Study on the softening mechanism of P91 steel[J]. Materials Science and Engineering A, 2018, 728: 63-71. [11]Ghassemi-Armaki H, Chen R, Maruyama K, et al. Static recovery of tempered lath martensite microstructures during long-term aging in 9-12%Cr heat resistant steels[J]. Materials Letters, 2009, 63(28): 2423-2425. [12]Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 1-15. [13]Kostka A, Tak K G, Hellmig R, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels[J]. Acta Materialia, 2007, 55(2): 539-550. [14]Hald J. Microstructure and long-term creep properties of 9-12%Cr steels[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1-2): 30-37. [15]Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels[J]. Materials Science and Engineering A, 2004, 387(1): 565-569. |