[1]陈 君, 李全安, 张 清, 等. 金属腐蚀磨损的研究进展[J]. 腐蚀科学与防护技术, 2014, 26(5): 474-478. Chen Jun, Li Quan'an, Zhang Qing, et al. Research progress of metal corrosive wear[J]. Corrosion Science and Protection Technology, 2014, 26(5): 474-478. [2]Dalbert V, Mary N, Normand B, et al. The effects of microstructures and repassivation kinetics on the tribocorrosion resistance of ferrite and ferrite-martensite stainless steels[J]. Wear, 2019, 420-421: 245-256. [3]Zhang Yue, Yin Xiangyun, Yan Fengyuan. Tribocorrosion behaviour of type S31254 steel in seawater: Identification of corrosion-wear components and effect of potential[J]. Materials Chemistry and Physics, 2016, 179: 273-281. [4]Henry P, Takadoum J, Bercot P. Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media[J]. Corrosion Science, 2009, 51(6): 1308-1314. [5]Mraied H, Cai W J. The effects of Mn concentration on the tribocorrosion resistance of Al-Mn alloys[J]. Wear, 2017, 380-381: 191-202. [6]Hacisalihoglu I, Samancioglu A, Yildiz F, et al. Tribocorrosion properties of different type titanium alloys in simulated body fluid[J]. Wear, 2015, 332-333: 679-686. [7]Loez-Ortega A, Arana J L, Bayon R. On the comparison of the tribocorrosion behavior of passive and non-passivating materials and assessment of the influence of agitation[J]. Wear, 2020, 456-457: 203388. [8]Zhang Lu, Niu Ditao, Wen Bo, et al. Corrosion behavior of low alloy steel bars containing Cr and Al in coral concrete for ocean construction[J]. Construction and Building Materials, 2020, 258: 119564. [9]Wei Liang, Gao Kewei. Understanding the general and localized corrosion mechanisms of Cr-containing steels in supercritical CO2-saturated aqueous environments[J]. Journal of Alloys and Compounds, 2019, 792: 328-340. [10]罗 登, 温长飞, 郑 健, 等. 淬火温度对NM550钢组织和性能的影响[J]. 金属热处理, 2019, 44(4): 187-191. Luo Deng, Wen Changfei, Zheng Jian, et al. Effect of quenching temperature on microstructure and properties of NM550 steel[J]. Heat Treatment of Metals, 2019, 44(4): 187-191. [11]Huang Long, Deng Xiangtao, Wang Qi, et al. Microstructure, mechanical properties and wear resistance of low alloy abrasion resistant martensitic steel reinforced with TiC particles[J]. ISIJ International, 2020, 60(11): 2586-2595. [12]Huang Long, Deng Xiangtao, Li Chengru, et al. Effect of TiC particles on three-body abrasive wear behaviour of low alloy abrasion-resistant steel[J]. Wear, 2019, 434-435: 202971. [13]邓想涛, 王昭东, 袁 国, 等. HB450低合金超高强耐磨钢组织与性能[J]. 东北大学学报(自然科学版), 2010(7): 942-946. Deng Xiangtao, Wang Zhaodong, Yuan Guo, et al. Microstructure and mechanical properties of HB450 ultra-high strength low-alloy abrasion resistant steel[J]. Journal of Northeastern University (Natural Science), 2010(7): 942-946. [14]Deng Xiangtao, Fu Tianliang, Wang Zhaodong, et al. Epsilon carbide precipitation and wear behaviour of low alloy wear resistant steels[J]. Materials Science and Technology, 2016, 32(4): 320-327. [15]Deng Xiangtao, Wang Zhaodong, Han Yi, et al. Microstructure and abrasive wear behavior of medium carbon low alloy martensitic abrasion resistant steel[J]. Journal of Iron and Steel Research International, 2014, 21(1): 98-102. [16]Deng Xiangtao, Wang Zhaodong, Tian Yong, et al. An investigation of mechanical property and three-body impact abrasive wear behavior of a 0.27%C dual phase steel[J]. Materials and Design, 2013, 49(4): 220-225. [17]Rendon J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods[J]. Wear, 2009, 267(11): 2055-2061. [18]王献钧. 舰船结构钢的夏比冲击韧性与断口形貌[J]. 材料开发与应用, 1995(1): 44-48. Wang Xianjun. Charpy impact toughness and fracture appearance of ship structural steels[J]. Development and Application of Materials, 1995(1): 44-48. |