[1]迟成宇, 于鸿垚, 谢锡善. 世界700 ℃等级先进超超临界电站关键高温材料[J]. 世界钢铁, 2013, 13(2): 42-59. Chi Chengyu, Yu Hongyao, Xie Xishan. Critical high temperature materials for 700 ℃ A-USC power plants[J]. World Iron and Steel, 2013, 13(2): 42-59. [2]周慧云, 洪 嘉, 黄健航, 等. 超临界锅炉用材料的高温腐蚀研究进展[J]. 表面技术, 2016, 45(11): 145-152. Zhou Huiyun, Hong Jia, Huang Jianhang, et al. Research progress on the high temperature corrosion of supercitical boiler materials[J]. Surface Technology, 2016, 45(11): 145-152. [3]迟成宇, 于鸿垚, 谢锡善. 600 ℃超超临界电站锅炉过热器及再热器管道用先进奥氏体耐热钢的研究与发展[J]. 世界钢铁, 2012, 12(4): 50-65. Chi Chengyu, Yu Hongyao, Xie Xishan. Research and development of austenitic heat-resistant steels for 600 ℃ superheat/reheater tubes of USC power plant boilers[J]. World Iron and Steel, 2012, 12(4): 50-65. [4]张忠铧, 黄子阳, 孙元宁, 等. 3Cr抗CO2和H2S腐蚀系列油套管开发[J]. 宝钢技术, 2006(3): 5-8. Zhang Zhonghua, Huang Ziyang, Sun Yuanning, et al. Development of 3Cr series oil pipes with good CO2 and H2S corrosion resistant properties[J]. Baogang Technology, 2006(3): 5-8. [5]张兴洪. C、Si、Cr、Mo含量对2507铸造双相不锈钢组织和性能的影响[D]. 哈尔滨: 哈尔滨理工大学, 2014. Zhang Xinghong. Effect of C, Si, Cr and Mo contents on microstructure and properties of 2507 cast duplex stainless steels[D]. Harbin: Harbin University of Science and Technology, 2014. [6]高淼淼, 王 莹, 谢逍原, 等. 660 MW超临界锅炉屏式过热器管圈长时超温失效特征[J]. 金属热处理, 2018, 43(2): 233-238. Gao Miaomiao, Wang Ying, Xie Xiaoyuan, et al. Long-term over temperature failure characteristics of a tube coil on a 660 MW super-critical boiler platen superheater[J]. Heat Treatment of Metals, 2018, 43(2): 233-238. [7]Andrea Di Schino. Corrosion resistance of innovative super-ferritic stainless steels[J]. Journal of Chemical Technology and Metallurgy, 2020, 55(4): 882-888. [8]梁建平. 运行后高温紧固件25Cr2MoV钢的金相检验[J]. 才智, 2009(24): 64-65. [9]宁保群. T91铁素体耐热钢相变过程及强化工艺[D]. 天津: 天津大学, 2007. Ning Baoqun. Phase transformations and strengthening processes of T91 ferritic heat-resistant steel[D]. Tianjin: Tianjin University, 2007. [10]赵庆权. 国产化Super 304H钢管组织性能及持久强度研究[D]. 兰州: 兰州理工大学, 2008. Zhao Qingquan. The research of domestic Super 304H steel pipes on mechanical properties, microstructure and creep rupture strength[D]. Lanzhou: Lanzhou University of Technology, 2008. [11]杨为勤. 铸钢及球墨铸铁离心铸型材料许用应力的确定方法[J]. 铸造, 2013, 62(11): 1061-1066. Yang Weiqin. Definite method of permissible stress on centrifugal mould material in cast steel and ductile iron[J]. Foundry, 2013, 62(11): 1061-1066. [12]Wang S S, Peng D L, Chang L, et al. Enhanced mechanical properties induced by refined heat treatment for 9Cr-0.5Mo-1.8W martensitic heat resistant steel[J]. Materials and Design, 2013, 50: 165-173. [13]喻九阳, 王明伍, 张红才, 等. 25Cr2MoVA和15CrMo钢的高温蠕变特性[J]. 武汉工程大学学报, 2014, 36(5): 48-52. Yu Jiuyang, Wang Mingwu, Zhang Hongcai, et al. Creep behavior of 25Cr2MoVA steel and 15CrMo steel[J]. Journal of Wuhan Institute of Technology, 2014, 36(5): 48-52. [14]缪筱玲, 王鹏展. 超(超)临界锅炉用钢管Super 304H与XA704性能特点评价[J]. 东方电气评论, 2006(3): 31-36. Miao Xiaoling, Wang Pengzhan. Evaluation of Super 304H and XA704 tubes for ultra supercritical boiler[J]. Dongfang Electric Review, 2006(3): 31-36. [15]张毅隆. 耐腐蚀石油套管用钢的组织和性能研究[D]. 重庆:重庆科技学院,2018. Zhang Yilong. Study on microstructure and properties of corrosion-resistant steel for oil casing[D]. Chongqing: Chongqing University of Science and Technology, 2018. [16]钟万里,赵 君,王 伟,等. T91钢的回火工艺分析及其组织评定[J]. 金属热处理,2012, 37(3): 94-98. Zhong Wanli, Zhao Jun, Wang Wei, et al. Tempering process analysis and microstructure assessment of T91 steel[J]. Heat Treatment of Metals, 2012, 37(3): 94-98. [17]欧 平. Super 304H奥氏体耐热钢的时效析出与强化机理[D]. 上海: 上海交通大学, 2015. Ou Ping. Aging precipitation behavior and strengthening mechanism Super 304H austenitic heat resistant steel[D]. Shanghai: Shanghai Jiao Tong University, 2015. [18]Wang X, Zurob H S, Xu G, et al. Influence of microstructural length scale on the strength and annealing behavior of pearlite, bainite, and martensite [J]. Metallurgical and Materials Transactions A, 2013, 44(3): 1454-1461. [19]常铁军,尹树桐,姜树立,等. 25Cr2MoV钢锅炉螺栓紧固件的热处理工艺[J]. 金属热处理,2002, 27(8): 46-49. Chang Tiejun, Yin Shutong, Jiang Shuli, et al. Heat treatment process of boiler bolt fastener of 25Cr2MoV steel[J]. Heat Treatment of Metals, 2002, 27(8): 46-49. [20]Aoki Tetsuhiko. Applicability of low yield strength steel for ductility improvement of steel bridge piers[J]. Engineering Structures, 2005, 27(7): 1064-1073. [21]吴新丽,牛 靖,董俊明. 回火温度对25Cr2Ni4MoV钢组织和性能的影响[J]. 热加工工艺,2008, 37(20): 76-78. Wu Xinli, Niu Jing, Dong Junming. Effect of tempering temperature on microstructure and properties of 25Cr2Ni4MoV streel[J]. Hot Working Technology, 2008, 37(20): 76-78. [22]朱丽慧,赵钦新,顾海澄,等. 10Cr9MolVNbN耐热钢强化机理研究[J]. 机械工程材料, 1999, 23(1): 6-8. Zhu Lihui, Zhao Qinxin, Gu Haicheng, et al. Investigation on the strengthening mechanisms of 10Cr9Mo1VNbN heat-resistant steel[J]. Materials for Mechanical Engineering, 1999, 23(1): 6-8. [23]Shang Z, Ding Jie, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment[J]. Acta Materialia, 2019, 169: 209-224. [24]Cao Tieshan, Cheng Congqian, Zhao Jie, et al. Precipitation behavior of σ phase in ultra-supercritical boiler applied HR3C heat-resistant steel[J]. Acta Metallurgica Sinica(English Letters), 2019, 32(11): 1355-1361. [25]刘天佐,魏玉忠,马芹征,等. Super 304H钢650 ℃时效过程中析出相演化的定量分析[J]. 金属热处理,2019, 44(12): 232-237. Liu Tianzuo, Wei Yuzhong, Ma Qinzhen, et al. Quantitative analysis on of precipitates in Super 304H steel during ageing at 650 ℃[J]. Heat Treatment of Metals, 2019, 44(12): 232-237. [26]潘家栋. Super 304H、HR3C耐热钢管高温老化规律的研究[D]. 合肥: 合肥工业大学, 2013. Pan Jiangdong. Studies on high-temperature aging of the Super 304H and HR3C heat resistant steels[D]. Hefei: Hefei University of Technology, 2013. [27]Xu Hong, Zhou Shangkun, Zhu Yiming. Experimental study on the effect of H2S and SO2 on high temperature corrosion of 12Cr1MoV[J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1956-1964. [28]赵 帅, 兰 伟. 管道内防腐技术现状与研究进展[J]. 表面技术, 2015, 44(11): 112-118. Zhao Shuai, Lan Wei. Present status and research progress of anti-corrosion technology in pipeline[J]. Surface Technology, 2015, 44(11): 112-118. [29]吴晓东, 吴 刚, 朱晶晶, 等. 含铝奥氏体耐热钢的高温抗氧化性能[J]. 金属热处理, 2016, 41(8): 1-5. Wu Xiaodong, Wu Gang, Zhu Jingjing, et al. High temperature oxidation resistance of aluminum-containing austenitic heat-resisting steel[J]. Heat Treatment of Metals, 2016, 41(8): 1-5. [30]赖仙红, 王延峰, 杨小川, 等. VM-12SHC与T92耐热钢在带压蒸汽中的抗氧化行为比较[J]. 金属热处理, 2019, 44(2): 213-218. Lai Xianhong, Wang Yanfeng, Yang Xiaochuan, et al. Oxidation behavior comparison between VM12-SHC and T92 heat resistant steel in pressure steam[J]. Heat Treatment of Metals, 2019, 44(2): 213-218. [31]黄兴德, 周新雅, 游 喆, 等. 超(超)临界锅炉高温受热面蒸汽氧化皮的生长与剥落特性[J]. 动力工程, 2009, 29(6): 602-608. Huang Xingde, Zhou Xinya, You Zhe, et al. Oxide scale growth and exfoliation behavior on high temperature heat-absorbing surface exposed to steam for supercritical (ultrasupercritical) boilers[J]. Journal of Chinese Society of Power Engineering, 2009, 29(6): 602-608. [32]梁志远, 桂 雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究[J]. 西安交通大学学报, 2019, 53(7): 23-29. Liang Zhiyuan, Gui Yong, Zhao Qinxin. High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition[J]. Journal of Xi'an Jiaotong University, 2019, 53(7): 23-29. [33]Manoj Kumar, Deepa Mudgal, Lalit Ahuja. Evaluation of high temperature oxidation performance of bare and coated T91 steel[J]. Materials Today: Proceedings, 2020, 28: 620-624. [34]杨 乔. 超超临界火电锅炉用新型奥氏体耐热合金耐腐蚀性能研究[D]. 镇江: 江苏大学, 2018. Yang Qiao. Research on corrosion behavior of new austenite heat resistant alloy for ultra supercritical thermal power boiler[D]. Zhenjiang: Jiangsu University, 2018. [35]Taishi Moroishi, Hisao Fujikawa, Hirobumi Makiura. The effect of carbon, zirconium, niobium, and titanium on the oxidation resistance of chromium stainless steel[J]. Journal of the Electrochemical Society, 1979, 126(12): 2173-2182. [36]Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel[J]. Scripta Materialia, 2011, 65(6): 509-512. [37]Tatsuya Tokunaga, Hiroshi Ohtani, John Ågren. Evaluation of sensitization and self-healing in austenitic stainless steels based on simulations of Cr-depleted zones[J]. ISIJ International, 2011, 51(6): 965-968. [38]Park J H, Kim J K, Lee B H, et al. Three-dimensional atom probe analysis of intergranular segregation and precipitation behavior in Ti-Nb- stabilized low-Cr ferritic stainless steel[J]. Scripta Materialia, 2013, 68(5): 237-240. [39]Park Jin Ho, Seo Hyung Suk, Kim Kyoo Young. Alloy design to prevent intergranular corrosion of low-Cr ferritic stainless steel with weak carbide formers[J]. Journal of the Electrochemical Society, 2015, 162(8): 412-418. [40]Heo N H, Chang J C, Kim S J. Elevated temperature intergranular cracking in heat-resistant steels[J]. Materials Science and Engineering, 2013, 559: 665-677. [41]黄 翔. 超(超)临界机组用钢Super 304H高温蠕变下组织与性能演变规律[D]. 广州: 华南理工大学, 2016. Huang Xiang. Microstructure and property evolution of Super 304H steel for ultra supercritical boilers during high temperature creep[D]. Guangzhou: South China University of Technology, 2016. [42]Majid Bagheri, Hamidreza Pourdehsheykhi, Saeid Molamohammadi Kermani, et al. Damage characterization of heat resistant stainless steel grate plates in an iron ore pelletizing plant[J]. Engineering Failure Analysis, 2020, 110: 104414. [43]唐桢丁. 火电传热管用新型铁铬镍合金高温蠕变性能的研究[D]. 镇江: 江苏大学, 2016. Tang Zhengding. Study on high temperature creep properties of new Fe-Cr-Ni alloys applied to heat transfer tubes of thermal power[D]. Zhenjiang: Jiangsu University, 2016. [44]李 洪. 新型马氏体耐热钢的高温氧化和腐蚀性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. Li Hong. Research on the high temperature oxidation and corrosion properties of new martensitic heat resistant steel[D]. Harbin: Harbin Engineering University, 2019. [45]Zhang Weiwei, Xu Hong, Li Hongyuan. Reloading stress relaxation behavior analysis based on a creep model for high temperature bolting steel[J]. Applied Mechanics and Materials, 2013, 328: 950-954. [46]Sakthivel T, Shruti P, Parameswaran P, et al. Enhancement in creep strength of modified 9CR-1MO steel through thermo-mechanical treatment[J]. Transactions of the Indian Institute of Metals, 2016, 70(5): 1177-1182. [47]朱 麟. 高铬耐热钢高温蠕变行为及寿命预测[D]. 西安: 西北大学, 2019. Zhu Lin. Creep behavior and life prediction of high chromium heat resistant steel at elevated temperature[D]. Xi'an: Northwest University, 2019. [48]Xu Yuantao, Zhang Xiying, Tian Yubo, et al. Study on the nucleation and growth of M23C6 carbides in a 10%Cr martensite ferritic steel after long-term aging[J]. Materials Characterization, 2016, 111: 122-127. [49]徐严言, 周腾飞, 关凯书, 等. 25Cr2MoVA和B16螺栓在法兰接头中的抗蠕变性能[J]. 润滑与密封, 2017, 42(11): 111-114. Xu Yanyan, Zhou Tengfei, Guan Kaishu, et al. Creep resistance of 25Cr2MoVA steel and B16 steel bolts in flange joints[J]. Lubrication Engineering, 2017, 42(11): 111-114. [50]边彩霞, 周克毅, 朱正林, 等. 蒸汽侧氧化膜对锅炉T91钢管蠕变断裂寿命的影响[J]. 动力工程学报, 2013, 33(8): 659-664. Bian Caixia, Zhou Keyi, Zhu Zhenglin, et al. Effects of steam-side oxide scale on creep rupture life of T91 boiler steel tubes[J]. Journal of Chinese Society of Power Engineering, 2013, 33(8): 659-664. [51]Wang Qijiang, Zhai Guoli, Zhou Yedong. Review of research developments of 12Cr1MoVG heat resistant steel in China[J]. Baosteel Technical Research, 2017, 11(2): 18-29. [52]Dudziak T, Lukaszewicz M, Simms N, et al. Steam oxidation of TP347HFG, Super 304H and HR3C-analysis of significance of steam flowrate and specimen surface finish[J]. Corrosion Engineering, Science and Technology, 2015, 50(4): 272-282. [53]Kimura K, Kushima H, Sawada K. Long-term creep deformation property of modified 9Cr-1Mo steel[J]. Materials Science and Engineering A, 2009, 510-511(1): 58-63. [54]黄军林. 高温受热管蒸汽侧金属氧化膜失效问题研究[D]. 南京: 东南大学, 2015. Huang Junlin. On the failure of steam-side oxide scales on high temperature steam generation components[D]. Nanjing: Southeast University, 2015. |