[1]王鹏举, 陈爱华, 王英华, 等. 铜铬合金材料制备方法的研究进展[J]. 材料导报, 2016, 30(2): 606-609. Wang Pengju, Chen Aihua, Wang Yinghua, et al. Research progress of preparation methods of Cu-Cr alloy materials[J]. Materials Reports, 2016, 30(2): 606-609. [2]Xia Chengdong, Zhang Wan, Kang Zhanyuan, et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Materials Science and Engineering A, 2012, 538: 295-301. [3]刘卫锋, 宋克兴, 张彦敏, 等. 形变热处理对Cu-1.0Cr合金组织及性能的影响[J]. 特种铸造及有色合金, 2010, 30(10): 938-941. Liu Weifeng, Song Kexing, Zhang Yanmin, et al. Effects of thermo-mechanical treatment on microstructure and properties of Cu-1.0Cr alloy[J]. Special Casting & Nonferrous Alloys, 2010, 30(10): 938-941. [4]郭阳阳, 王发展, 王永滨, 等. HIP法制备CuCr触头的真空电击穿特性[J]. 金属热处理, 2020, 45(2): 181-185. Guo Yangyang, Wang Fazhan, Wang Yongbin, et al. Vacuum breakdown properties of CuCr contacts prepared by hot isostatic pressing[J]. Heat Treatment of Metals, 2020, 45(2): 181-185. [5]丁宗富, 丁雨田, 寇生中, 等. 热型连铸制备Cu-Cr合金的研究[J]. 兰州理工大学学报, 2004, 30(1): 32-34. Ding Zongfu, Ding Yutian, Kou Shengzhong, et al. Investigation of preparing Cu-Cr Alloy by means of continuous casting with heated mould[J]. Journal of Lanzhou University of Technology, 2004, 30(1): 32-34. [6]梁 博, 王庆娟, 周 晓, 等. 时效对ECAP 变形Cu-Cr-Zr 合金组织与性能的影响[J]. 金属热处理, 2017, 42(7): 43-45. Liang Bo, Wang Qingjuan, Zhou Xiao, et al. Effect of aging on microstructure and properties of ECAPed Cu-Cr-Zr alloy[J]. Heat Treatment of Metals, 2017, 42(7): 43-45. [7]杨 柳, 杨晓红, 康丹丹, 等. 稀土La的添加对Cu-Cr-Zr合金组织与性能的影响[J]. 西安理工大学学报, 2018, 34(1): 110-115. Yang Liu, Yang Xiaohong, Kang Dandan, et al. Effect of La addition on microstructure and properties of Cu-Cr-Zr alloy[J]. Journal of Xi'an University of Technology, 2018, 34(1): 110-115. [8]钟江伟, 张 鸿, 陈彦旭. 稀土元素La、Ce含量对Cu-0.4Cr-0.2Zr-0.15Mg合金组织和性能的影响[J]. 中国有色金属学报, 2016, 26(5): 1092-1099. Zhong Jiangwei, Zhang Hong, Chen Yanxu. Effects of Ce and La contents in rare earth elements on microstructure and properties of Cu-0.4Cr-0.2Zr-0.15Mg alloy[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(5): 1092-1099. [9]李明茂, 张乐清, 王文静. 微量铪对铜及铜铬合金组织及性能的影响[J]. 金属热处理, 2018, 43(8): 23-30. Li Mingmao, Zhang Leqing, Wang Wenjing. Effect of trace hafnium on microstructure and properties of Cu and Cu-Cr alloys[J]. Heat Treatment of Metals, 2018, 43(8): 23-30. [10]Islamgaliev R K, Sitdikov V D, Nesterov K M, et al. Structure and crystallographic texture in the Cu-Cr-Ag alloy subjected to severe plastic deformation[J]. Reviews on Advanced Materials Science, 2014(39): 61-68. [11]刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报(B), 2020, 34(4): 08131-08135. Liu Yilun. Adaptability research on Cu-Cr-Zr alloy for high speed railway overhead contact lines during continuous extrusion process[J]. Materials Reports B, 2020, 34(4): 08131-08135. [12]钟建伟, 周海涛, 赵仲恺, 等. 形变热处理对Cu-Cr-Zr合金时效组织和性能的影响[J]. 中国有色金属学报, 2008, 18(6): 1032-1037. Zhong Jianwei, Zhou Haitao, Zhao Zhongkai, et al. Effects of thermo-mechanical heat treatment processing on microstructure and properties of Cu-Cr-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(6): 1032-1037. [13]耿永锋, 张 毅, 田保红, 等. 形变热处理对Cu-0.80Cr-0.30Zr-0.03P合金时效性能的影响[J]. 材料热处理学报, 2019, 40(8): 69-75. Geng Yongfeng, Zhang Yi, Tian Baohong, et al. Effects of thermo-mechanical treatment on aging properties of Cu-0.80Cr-0.30Zr-0.03P alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 69-75. [14]刘 月, 肖 柱, 李 周, 等. 形变热处理对Cu-Cr-Ag合金组织和性能的影响[J]. 稀有金属, 2018, 42(4): 337-343. Liu Yue, Xiao Zhu, Li Zhou, et al. Properties and microstructure evolution of Cu-Cr-Ag alloy with thermomechanical treatments[J]. Chinese Journal of Rare Metals, 2018, 42(4): 337-343. [15]靖青秀, 张泽辉, 汪 航, 等. Cu-Cr-Fe-Ni合金形变热处理过程中的组织与性能[J]. 金属热处理, 2020, 45(4): 84-89. Jing Qingxiu, Zhang Zehui, Wang Hang, et al. Microstructure and properties of Cu-Cr-Fe-Ni alloy during thermo-mechanical heat treatment processing[J]. Heat Treatment of Metals, 2020, 45(4): 84-89. [16]周志明, 王亚平, 彭成允, 等. 时效处理对挤压CuCr25合金显微硬度及导电率的影响[J]. 高压电器, 2008, 44(3): 225-231. Zhou Zhiming, Wang Yaping, Peng Chengyun, et al. Effect ofaging treatment on microhardness and electrical conductivity of extruded CuCr25 alloy[J]. High Voltage Apparatus, 2008, 44(3): 225-231. [17]李明茂, 张小平, 陈辉明, 等. Cu-Cr-In合金形变热处理过程的组织与性能演变研究[J]. 稀有金属, 2017, 41(12): 1311-1317. Li Mingmao, Zhang Xiaoping, Chen Huiming, et al. Microstructural evolution and mechanical property of Cu-Cr-In alloy during thermo-mechanical treatment[J]. Chinese Journal of Rare Metals, 2017, 41(12): 1311-1317. [18]徐长征, 王庆娟, 郑茂盛, 等. 热处理对Cu-0.36%Cr合金组织和性能的影响[J]. 功能材料, 2006, 37(12): 1898-1901. Xu Changzheng, Wang Qingjuan, Zheng Maosheng, et al. The effects of heat treatments on structure and properties of Cu-0.36wt%Cr alloy[J]. Journal of Functional Materials, 2006, 37(12): 1898-1901. [19]徐 洲, 姚寿山. 材料加工原理[M]. 北京: 科学出版社, 2003: 149. Xu Zhou, Yao Shoushan. Principle of Material Processing[M]. Beijing: Science Press, 2003: 149. |